1 Lagrangians

(1.1) Use Fermat’s principle of least time to derive Snell’s law.

The path taken by a beam of light always follows Fermat’s principle of least time
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If the path crosses two regions of space with different indices of refraction n = ¢/v, we can write the total
time elapsed as

where S = ¢T'. Introducing a coordinate system for the plane in which the light beam moves, we can write
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where y = dy/dx and n(z,y) takes the constant values n; and ng on either side of the boundary which we
can place along = = 0
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Computing 05 = 0 (see problem 1.3), we find
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which for our function takes the form
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Since n(z,y) does not vary in the y-direction, the first term vanishes. In addition, the second term being a
total derivative means we obtain
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Defining the angles of incidence and refraction, 6; and 6, respectively, relative to the line y = 0 (perpendicular
to the boundary), we obtain Snell’s law

n1 sinf; = ny sin f
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(1.2) Consider the functionals
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of the function f. Find the functional derivatives
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Starting with H|[f], we find
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(see problem 1.4 for going from line 2 to 3). Next, for I[f] we find
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and then
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Lastly, for J[f] we find
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(1.3) Consider the functional G[f] = /dyg(y,f). Show that
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Now consider the functional H[f] = /dy g(y, f, f') and show that
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where [’ = 0f/dy. For the functional J[f] = /dyg(y,f7 I, ") show that
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where f” = 0%f/0y%.

To consider arbitrary functions inside a functional, we turn to the limit definition of the functional derivative

SFIf) _ . FUAG) + e3(a’ — )] = FIf()
5(x) ~ e :




Applying this to the first functional G[f], we find
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Applying this to H[f], we find
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Lastly, applying this to J[f], we find
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Using the limit definition of the functional derivative and treating ¢(z) as a trivial functional of ¢, we directly



obtain
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(1.5) For a three-dimensional elastic medium, the potential and kinetic energy are
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respectively. Use these results, and the functional derivative approach, to show that v obeys

the wave equation
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where v is the velocity of the wave.

The action for this system can be expressed as the functional
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where d*z = dt d3z. For a multivariable function, the functional derivative is
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The equation of motion is defined by the condition that .5 = 0, which can be expressed as

&jé/[i](/) = /d4x [(gi) %5(4) (x —2') + 3(6V£1/1) VW (x — x’)}

0 (0L oL oL
= [ d*z [— () ~-V. ()}5@ r—a')+ /d3x oW (=7
/ ot 8’1/1 8(V¢) ( ) t boundary




where in the last step we drop the primes. This yields the Euler-Lagrange equations of motion
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If we define v = T which has units [v] = T we obtain the wave equation
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(1.6) Show that if Z;[J] is given by
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where A(z) = A(—x) then
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The functional derivative of an exponential has the same structure as the ordinary derivative of an exponential
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This can be seen by writing the exponential as a Taylor series

5 5 § =1 N
5J(z)¢ N= 5.7(z) 2 1]

n=0
! n-19F[J]
_nz:% (n—l)!F[J] dJ(x)
g S FlJ] ar)
0J(x) 0J(x)

Therefore, we can write
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