
Chapter 23

Path integrals: I said to him, ‘You’re crazy’

23.1

For the Lagrangian
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@ẋ
�

@L

@x
= 0
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Plugging this in, the Lagrangian evaluated along the equation of motion is given by
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2Â
b

Since this is the expression which appears in the evaluation of the Gaussian integral
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we see that the exponential is just the classical action evaluated along the classical equation of motion
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23.2

The second moment of the Gaussian distribution
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can be solved for using the following trick. Since the zeroth moment of the inhomogeneous Gaussian

distribution is given by
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we can write the homogeneous second moment as

µ2 =
@2

@b2
(µ0,b)

����
b=0

Using the result of the zeroth moment, we find
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Denoting the n-th normalized moment as hxn
i
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we can work out the first two non-zero moments as follows
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In order to really see the pattern, we can go one step further and find that
⌦
x6
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= 15/a3, at which point we

can extrapolate and write
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which can be checked and is indeed correct. This can be understood diagrammatically by associating each

factor of 1/a with a line which connects two factors of x. For
⌦
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, there are only two factors of x, and thus

only one way to connect them

As for
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, there are three ways to combine four factors of x into pairs
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Therefore, for n even we have
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Upgrading to the N -dimensional Gaussian integral
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we can calculate moments using the same trick. For hxixji we have
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In analogy with the one dimensional case, we see that we can understand these terms diagrammatically by

associating factors of A�1
to lines connecting points labeled with factors of xi. Using this, we can write down

the expression for hxixjxkx`i as
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which can be confirmed by doing the necessary derivatives. For the general case hxixj . . . xki, we have
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where the indices {a, b, . . . c, d} represent a permutation of {i, j, . . . , k, `}, and a “Wick sum” is defined as a

sum over all permutations of the indices.

23.3

Consider the Lagrangian
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The amplitude A for a particle to be in the ground state at t = 0 and t = T is given by
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Assuming the ground state corresponds to x = 0, we can do an integration by parts on the first term in the

Lagrangian to write
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Defining
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which is just an inhomogeneous Gaussian integral. Therefore, the solution is given by
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where G(t, t) is the Green’s function to C. As was done in the chapter, we can rewrite this to eliminate B
using the free particle propagator as
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The Green’s function can be written in frequency space as
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which we can then inverse Fourier transform to write
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Our familiarity with the propagator in this form allows us to quickly do the integral by closing the contour

either above or below and obtain
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Since the prefactor in the amplitude is there where we have a source or not, we’ll focus on just the exponential

piece and write
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With the Green’s function in this form, the integral in the exponential is straightforward

Z 1

�1
dt dt0 f(t)G(t, t0)f(t0) =

f2
0

2m!

Z T

0

dt

Z T

0

dt0
⇣
✓(t� t0)e�i!(t�t0)

+ ✓(t0 � t)ei!(t�t0)
⌘

=
f2
0

m!

Z T

0

dt

Z t

0

dt0 e�i!(t�t0)

=
f2
0

m!

Z T

0

dt
1

i!

�
1� e�i!t

�

= �
if2

0

m!2

✓
T �

1

i!

�
1� e�i!T

�◆

= �
if2

0

m!2


T +

i

!

✓
cos

!T

2
� i sin

!T

2

◆
2i sin

!T

2

�

Z 1

�1
dt dt0 f(t)G(t, t0)f(t0) = �

if2
0

m!2


T �

sin!T

!
+ i

2

!
sin

2
!T

2

�

and therefore we have

A = exp


if2

0

2m!2

✓
T �

sin!T

!
+ i

2

!
sin

2
!T

2

◆�



CHAPTER 23. PATH INTEGRALS: I SAID TO HIM, ‘YOU’RE CRAZY’ 74

The probability amplitude follows as
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which is the same result obtained in Exercise 22.1 by expanding the S-operator. The imaginary part of the

amplitude corresponds to the complex phase the particle acquires from t = 0 to t = T . Physically, this is the

term which would lead to interference if we were considering a theory in which multiple particles were emitted

and absorbed by the source terms.


