Chapter 23

Path integrals: I said to him, ‘You’re crazy’

23.1

For the Lagrangian

\[L = \frac{1}{2} x \dot{A} x + bx \]

assuming \(x \) is an implicit function of \(t \), the equations of motion yield

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0
\]

\[
\dot{A} x + b = 0
\]

\[
x = -\dot{A}^{-1} b
\]

Plugging this in, the Lagrangian evaluated along the equation of motion is given by

\[
L_{\text{EOM}} = \frac{1}{2} \left(-\dot{A}^{-1} b\right) \dot{A} \left(-\dot{A}^{-1} b\right) + b \left(-\dot{A}^{-1} b\right)
\]

\[
= \frac{1}{2} b \dot{A}^{-1} b - b \dot{A}^{-1} b
\]

\[
L_{\text{EOM}} = -b \frac{1}{2} \dot{A}^{-1} b
\]

Since this is the expression which appears in the evaluation of the Gaussian integral

\[
\int \mathcal{D}[x] \exp \left(\frac{i}{2} x \dot{A} x + bx \right) = \frac{B}{\sqrt{\det \dot{A}}} \exp \left(-ib \frac{1}{2} \dot{A}^{-1} b \right)
\]

we see that the exponential is just the classical action evaluated along the classical equation of motion

\[
\int \mathcal{D}[x] \exp \left(\frac{i}{2} x \dot{A} x + bx \right) = \frac{B}{\sqrt{\det \dot{A}}} \exp \left(iS_{\text{EOM}} \right)
\]

23.2

The second moment of the Gaussian distribution

\[
\mu_2 = \int_{-\infty}^{\infty} dx x^2 e^{-\frac{1}{2}a x^2}
\]

can be solved for using the following trick. Since the zeroth moment of the inhomogeneous Gaussian distribution is given by

\[
\mu_{0,b} = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}a x^2 + bx} = \sqrt{\frac{2\pi}{a}} e^{b^2/2a}
\]
we can write the homogeneous second moment as
\[\mu_2 = \frac{\partial^2}{\partial b^2} \left(\mu_{0,b} \right) \bigg|_{b=0} \]

Using the result of the zeroth moment, we find
\[\mu_2 = \sqrt{\frac{2\pi}{a}} \]

Denoting the \(n \)-th normalized moment as \(\langle x^n \rangle \)
\[\langle x^n \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^n e^{-\frac{1}{2} ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2} ax^2}} \]
we can work out the first two non-zero moments as follows
\[\langle x^2 \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^2 e^{-\frac{1}{2} ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2} ax^2}} = \sqrt{\frac{a}{2\pi}} \left(\frac{\partial^2}{\partial b^2} \left(\mu_{0,b} \right) \right) \bigg|_{b=0} \]
\[\langle x^2 \rangle = \frac{1}{a} \]

\[\langle x^4 \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^4 e^{-\frac{1}{2} ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2} ax^2}} = \sqrt{\frac{a^2}{2\pi}} \left(\frac{\partial^4}{\partial b^4} \left(\mu_{0,b} \right) \right) \bigg|_{b=0} \]
\[\langle x^4 \rangle = \frac{3}{a^2} \]

In order to really see the pattern, we can go one step further and find that \(\langle x^6 \rangle = \frac{15}{a^3} \), at which point we can extrapolate and write
\[\langle x^n \rangle = \begin{cases} 0 & n \text{ odd} \\ \frac{(n-1)!!}{a^{n/2}} & n \text{ even} \end{cases} \]

which can be checked and is indeed correct. This can be understood diagrammatically by associating each factor of \(1/a \) with a line which connects two factors of \(x \). For \(\langle x^2 \rangle \), there are only two factors of \(x \), and thus only one way to connect them

\[\langle x^2 \rangle = x \rightarrow x \]

As for \(\langle x^4 \rangle \), there are three ways to combine four factors of \(x \) into pairs

\[\langle x^4 \rangle = \begin{array}{c} x \rightarrow x \rightarrow x \rightarrow x \\ + x \rightarrow x \leftrightarrow x \rightarrow x \\ + x \rightarrow x \rightarrow x \rightarrow x \end{array} \]
Therefore, for \(n \) even we have

\[
\langle x^n \rangle = \sum_{\text{All graphs}} (\text{n points connected into pairs})
\]

Upgrading to the \(N \)-dimensional Gaussian integral

\[
\mathcal{K} = \int_{-\infty}^{\infty} dx_1 \ldots dx_N e^{-\frac{1}{2} x^T A x + b^T x} = \sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2} b^T A^{-1} b}
\]

we can calculate moments using the same trick. For \(\langle x_i x_j \rangle \) we have

\[
\langle x_i x_j \rangle = \int_{-\infty}^{\infty} dx_1 \ldots dx_N x_i x_j e^{-\frac{1}{2} x^T A x} = \int_{-\infty}^{\infty} dx_1 \ldots dx_N e^{-\frac{1}{2} x^T A x} = \sqrt{\frac{(2\pi)^N}{\det A}} \left(\frac{\partial^2}{\partial b_j \partial b_i} \mathcal{K} \right)_{b=0} = \frac{\partial^2}{\partial b_j} \left(b_i (A^{-1})_{ik} e^{\frac{1}{2} b^T A^{-1} b} \right)_{b=0}
\]

\[
\langle x_i x_j \rangle = (A^{-1})_{ij}
\]

In analogy with the one dimensional case, we see that we can understand these terms diagrammatically by associating factors of \(A^{-1} \) to lines connecting points labeled with factors of \(x_i \). Using this, we can write down the expression for \(\langle x_i x_j x_k x_\ell \rangle \) as

\[
\langle x_i x_j x_k x_\ell \rangle = (A^{-1})_{ij} (A^{-1})_{kl} + (A^{-1})_{ik} (A^{-1})_{j\ell} + (A^{-1})_{il} (A^{-1})_{jk}
\]

which can be confirmed by doing the necessary derivatives. For the general case \(\langle x_i x_j \ldots x_k \rangle \), we have

\[
\langle x_i x_j \ldots x_k \rangle = \sum_{\text{Wick}} (A^{-1})_{ab} \ldots (A^{-1})_{cd}
\]

where the indices \(\{a, b, \ldots c, d\} \) represent a permutation of \(\{i, j, \ldots, k, \ell\} \), and a “Wick sum” is defined as a sum over all permutations of the indices.

23.3

Consider the Lagrangian

\[
L = \frac{1}{2} m \dot{x}^2(t) - \frac{1}{2} m \omega^2 x^2(t) + f(t)x(t)
\]

where

\[
f(t) = \begin{cases}
 f_0 & 0 \leq t \leq T \\
 0 & \text{else}
\end{cases}
\]

The amplitude \(A \) for a particle to be in the ground state at \(t = 0 \) and \(t = T \) is given by

\[
A = \int_{x(0)=0}^{x(T)=0} D[x] \exp \left(i \int_{-\infty}^{\infty} dt L \right)
\]

Assuming the ground state corresponds to \(x = 0 \), we can do an integration by parts on the first term in the Lagrangian to write

\[
L = \frac{1}{2} x(t) \left[m \left(-\frac{d^2}{dt^2} - \omega^2 \right) x(t) + f(t)x(t) \right]
\]
Defining

\[C = m \left(-\frac{d^2}{dt^2} - \omega^2 \right) \]

we have

\[A = \int D[x] \exp \left(i \int_{-\infty}^{\infty} dt \left(\frac{1}{2} x(t) C x(t) + f(t) x(t) \right) \right) \]

which is just an inhomogeneous Gaussian integral. Therefore, the solution is given by

\[A = \frac{B}{\sqrt{\det C}} \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} dt \, dt' \, f(t) G(t, t') f(t') \right) \]

where \(G(t, t) \) is the Green’s function to \(C \). As was done in the chapter, we can rewrite this to eliminate \(B \) using the free particle propagator as

\[A = \sqrt{-\frac{im\omega}{2\pi \sin \omega T}} \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} dt \, dt' \, f(t) G(t, t') f(t') \right) \]

The Green’s function can be written in frequency space as

\[\tilde{G}(\nu) = \frac{-1}{m} \frac{1}{\nu^2 - \omega^2 + i\epsilon} \]

which we can then inverse Fourier transform to write

\[G(t, t') = \frac{-1}{m} \int_{-\infty}^{\infty} d\nu \, \frac{e^{-i\nu(t-t')}}{2\pi \nu^2 - \omega^2 + i\epsilon} \]

Our familiarity with the propagator in this form allows us to quickly do the integral by closing the contour either above or below and obtain

\[G(t, t') = \frac{1}{2m\omega} \left(\theta(t-t') e^{-i\omega(t-t')} + \theta(t'-t) e^{i\omega(t-t')} \right) \]

Since the prefactor in the amplitude is there where we have a source or not, we’ll focus on just the exponential piece and write

\[
\begin{align*}
A &\sim \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} dt \, dt' \, f(t) G(t, t') f(t') \right) \\
G(t, t') &= \frac{1}{2m\omega} \left(\theta(t-t') e^{-i\omega(t-t')} + \theta(t'-t) e^{i\omega(t-t')} \right)
\end{align*}
\]

With the Green’s function in this form, the integral in the exponential is straightforward

\[
\begin{align*}
\int_{-\infty}^{\infty} dt \, dt' \, f(t) G(t, t') f(t') &= \int_{-\infty}^{T} dt \int_{0}^{T} dt' \, \left(\theta(t-t') e^{-i\omega(t-t')} + \theta(t'-t) e^{i\omega(t-t')} \right) \\
&= \frac{f_0^2}{2m\omega} \int_{0}^{T} dt \int_{0}^{T} dt' \, e^{-i\omega(t-t')} \\
&= \frac{f_0^2}{m\omega} \int_{0}^{T} dt \, \frac{1}{i\omega} \left(1 - e^{-i\omega t} \right) \\
&= -\frac{if_0^2}{m\omega^2} \left(T - \frac{1}{i\omega} \left(1 - e^{-i\omega T} \right) \right) \\
&= -\frac{if_0^2}{m\omega^2} \left[T + \frac{i}{\omega} \left(\frac{\omega T}{2} - i \frac{\sin \frac{\omega T}{2}}{2} \right) 2i \sin \frac{\omega T}{2} \right] \\
\int_{-\infty}^{\infty} dt \, dt' \, f(t) G(t, t') f(t') &= -\frac{if_0^2}{m\omega^2} \left[T - \frac{\sin \omega T}{\omega} + i \frac{2}{\omega} \sin^2 \frac{\omega T}{2} \right]
\end{align*}
\]

and therefore we have

\[A = \exp \left[\frac{if_0^2}{2m\omega^2} \left(T - \frac{\sin \omega T}{\omega} + i \frac{2}{\omega} \sin^2 \frac{\omega T}{2} \right) \right] \]
The probability amplitude follows as

\[|A|^2 = \exp \left(-\frac{2f_0^2}{m\omega^3} \sin^2 \frac{\omega T}{2} \right) \]

which is the same result obtained in Exercise 22.1 by expanding the S-operator. The imaginary part of the amplitude corresponds to the complex phase the particle acquires from \(t = 0 \) to \(t = T \). Physically, this is the term which would lead to interference if we were considering a theory in which multiple particles were emitted and absorbed by the source terms.