Chapter 23

Path integrals: I said to him, ‘You’re crazy’

For the Lagrangian
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assuming x is an implicit function of ¢, the equations of motion yield
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Plugging this in, the Lagrangian evaluated along the equation of motion is given by
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Since this is the expression which appears in the evaluation of the Gaussian integral
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we see that the exponential is just the classical action evaluated along the classical equation of motion
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The second moment of the Gaussian distribution
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can be solved for using the following trick. Since the zeroth moment of the inhomogeneous Gaussian

distribution is given by
Ho,b = /OO dg e~ 3007 Hbe = \/2—%"2/2‘1
oo a

70



CHAPTER 23. PATH INTEGRALS: I SAID TO HIM, ‘YOU'RE CRAZY’ 71

we can write the homogeneous second moment as
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Using the result of the zeroth moment, we find
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Denoting the n-th normalized moment as (™)
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we can work out the first two non-zero moments as follows
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In order to really see the pattern, we can go one step further and find that <z6> = 15/a®, at which point we
can extrapolate and write
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which can be checked and is indeed correct. This can be understood diagrammatically by associating each
factor of 1/a with a line which connects two factors of . For <x2>, there are only two factors of z, and thus
only one way to connect them

() =

As for <;L'4>, there are three ways to combine four factors of x into pairs

(z*) = + // +
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Therefore, for n even we have

(z™) = Z (n points connected into pairs)

All graphs

Upgrading to the N-dimensional Gaussian integral

K= - dry...dzy e~ 3% Ax+bix _ Me%bTAilb
o det A

we can calculate moments using the same trick. For (x;x;) we have

o0
14T
/ dzy ... dey zzje 2" Ax

(vizj) = —
/ dxl...dee_ix TAx
detA 0 0 IC
(2m)N 8b ob; —0
8 1 T -1
- b’L A~ b "A™"b
8b] ( ( )b:O

(zizj) = (A~ 1)”

In analogy with the one dimensional case, we see that we can understand these terms diagrammatically by
associating factors of A~! to lines connecting points labeled with factors of x;. Using this, we can write down
the expression for (z;z;xpxe) as

(wijopwe) = (A_l)ij (A_l)u + (A_l)ik(A_l)je + (A_l)ig(A_l)jk

which can be confirmed by doing the necessary derivatives. For the general case (z;z; ...xx), we have
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where the indices {a, b, ...c,d} represent a permutation of {3, 7,...,k, ¢}, and a “Wick sum” is defined as a
sum over all permutations of the indices.

Consider the Lagrangian
1
L= oma®(t) = omwa®(t) + f()z(t)

where

0 else

f(t):{fo 0<t<T

The amplitude A for a particle to be in the ground state at ¢ = 0 and ¢ = T is given by

z(T)= 0 00
A= / x] exp ( / dt L)
(0)=0 —00
Assuming the ground state corresponds to z = 0, we can do an integration by parts on the first term in the
Lagrangian to write

L= %x(t) {m (-%; - wﬂx(t) + () ()
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Defining
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which is just an inhomogeneous Gaussian integral. Therefore, the solution is given by
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where G(t,t) is the Green’s function to C. As was done in the chapter, we can rewrite this to eliminate B

we have

using the free particle propagator as
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The Green’s function can be written in frequency space as
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which we can then inverse Fourier transform to write
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Our familiarity with the propagator in this form allows us to quickly do the integral by closing the contour

either above or below and obtain
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Since the prefactor in the amplitude is there where we have a source or not, we’ll focus on just the exponential
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piece and write
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With the Green’s function in this form, the integral in the exponential is straightforward
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and therefore we have
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The probability amplitude follows as
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which is the same result obtained in Exercise 22.1 by expanding the S-operator. The imaginary part of the
amplitude corresponds to the complex phase the particle acquires from ¢t = 0 to ¢ = T. Physically, this is the
term which would lead to interference if we were considering a theory in which multiple particles were emitted
and absorbed by the source terms.



