## Chapter 23

## Path integrals: I said to him, 'You're crazy'

## 23.1

For the Lagrangian

$$
L=\frac{1}{2} x \hat{\mathcal{A}} x+b x
$$

assuming $x$ is an implicit function of $t$, the equations of motion yield

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=0 \\
\hat{\mathcal{A}} x+b=0 \\
x=-\hat{\mathcal{A}}^{-1} b
\end{gathered}
$$

Plugging this in, the Lagrangian evaluated along the equation of motion is given by

$$
\begin{aligned}
L_{\mathrm{EOM}} & =\frac{1}{2}\left(-\hat{\mathcal{A}}^{-1} b\right) \hat{\mathcal{A}}\left(-\hat{\mathcal{A}}^{-1} b\right)+b\left(-\hat{\mathcal{A}}^{-1} b\right) \\
& =\frac{1}{2} b \hat{\mathcal{A}}^{-1} b-b \hat{\mathcal{A}}^{-1} b \\
L_{\mathrm{EOM}} & =-b \frac{1}{2 \hat{\mathcal{A}}} b
\end{aligned}
$$

Since this is the expression which appears in the evaluation of the Gaussian integral

$$
\int \mathcal{D}[x] \exp \left(\frac{i}{2} x \hat{\mathcal{A}} x+b x\right)=\frac{B}{\sqrt{\operatorname{det} \hat{\mathcal{A}}}} \exp \left(-i b \frac{1}{2 \hat{\mathcal{A}}} b\right)
$$

we see that the exponential is just the classical action evaluated along the classical equation of motion

$$
\int \mathcal{D}[x] \exp \left(\frac{i}{2} x \hat{\mathcal{A}} x+b x\right)=\frac{B}{\sqrt{\operatorname{det} \hat{\mathcal{A}}}} \exp \left(i S_{\mathrm{EOM}}\right)
$$

## 23.2

The second moment of the Gaussian distribution

$$
\mu_{2}=\int_{-\infty}^{\infty} \mathrm{d} x x^{2} e^{-\frac{1}{2} a x^{2}}
$$

can be solved for using the following trick. Since the zeroth moment of the inhomogeneous Gaussian distribution is given by

$$
\mu_{0, b}=\int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{1}{2} a x^{2}+b x}=\sqrt{\frac{2 \pi}{a}} e^{b^{2} / 2 a}
$$

we can write the homogeneous second moment as

$$
\mu_{2}=\left.\frac{\partial^{2}}{\partial b^{2}}\left(\mu_{0, b}\right)\right|_{b=0}
$$

Using the result of the zeroth moment, we find

$$
\mu_{2}=\sqrt{\frac{2 \pi}{a}} \frac{1}{a}
$$

Denoting the $n$-th normalized moment as $\left\langle x^{n}\right\rangle$

$$
\left\langle x^{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \mathrm{d} x x^{n} e^{-\frac{1}{2} a x^{2}}}{\int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{1}{2} a x^{2}}}
$$

we can work out the first two non-zero moments as follows

$$
\begin{aligned}
&\left\langle x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \mathrm{d} x x^{2} e^{-\frac{1}{2} a x^{2}}}{\int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{1}{2} a x^{2}}} \\
&=\left.\sqrt{\frac{a}{2 \pi}} \frac{\partial^{2}}{\partial b^{2}}\left(\mu_{0, b}\right)\right|_{b=0} \\
& \begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{1}{a} \\
\left\langle x^{4}\right\rangle & =\frac{\int_{-\infty}^{\infty} \mathrm{d} x x^{4} e^{-\frac{1}{2} a x^{2}}}{\int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{1}{2} a x^{2}}} \\
& =\left.\sqrt{\frac{a}{2 \pi}} \frac{\partial^{4}}{\partial b^{4}}\left(\mu_{0, b}\right)\right|_{b=0} \\
\left\langle\left\langle x^{4}\right\rangle\right. & =\frac{3}{a^{2}}
\end{aligned}
\end{aligned}
$$

In order to really see the pattern, we can go one step further and find that $\left\langle x^{6}\right\rangle=15 / a^{3}$, at which point we can extrapolate and write

$$
\left\langle x^{n}\right\rangle= \begin{cases}0 & n \text { odd } \\ \frac{(n-1)!!}{a^{n / 2}} & n \text { even }\end{cases}
$$

which can be checked and is indeed correct. This can be understood diagrammatically by associating each factor of $1 / a$ with a line which connects two factors of $x$. For $\left\langle x^{2}\right\rangle$, there are only two factors of $x$, and thus only one way to connect them

$$
\left\langle x^{2}\right\rangle=x \longmapsto x
$$

As for $\left\langle x^{4}\right\rangle$, there are three ways to combine four factors of $x$ into pairs


Therefore, for $n$ even we have

$$
\left\langle x^{n}\right\rangle=\sum_{\text {All graphs }}(n \text { points connected into pairs })
$$

Upgrading to the $N$-dimensional Gaussian integral

$$
\mathcal{K}=\int_{-\infty}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{N} e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}}=\sqrt{\frac{(2 \pi)^{N}}{\operatorname{det} \mathbf{A}}} e^{\frac{1}{2} \mathbf{b}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{b}}
$$

we can calculate moments using the same trick. For $\left\langle x_{i} x_{j}\right\rangle$ we have

$$
\begin{aligned}
\left\langle x_{i} x_{j}\right\rangle & =\frac{\int_{-\infty}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{N} x_{i} x_{j} e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}}{\int_{-\infty}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{N} e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A x}}} \\
& =\left.\sqrt{\frac{\operatorname{det} \mathbf{A}}{(2 \pi)^{N}}} \frac{\partial}{\partial b_{j}} \frac{\partial}{\partial b_{i}} \mathcal{K}\right|_{\mathbf{b}=0} \\
& =\frac{\partial}{\partial b_{j}}\left(b_{i}\left(\mathbf{A}^{-1}\right)_{i k} e^{\frac{1}{2} \mathbf{b}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{b}}\right)_{\mathbf{b}=0} \\
\left\langle x_{i} x_{j}\right\rangle & =\left(\mathbf{A}^{-1}\right)_{i j}
\end{aligned}
$$

In analogy with the one dimensional case, we see that we can understand these terms diagrammatically by associating factors of $\mathbf{A}^{-1}$ to lines connecting points labeled with factors of $x_{i}$. Using this, we can write down the expression for $\left\langle x_{i} x_{j} x_{k} x_{\ell}\right\rangle$ as

$$
\left\langle x_{i} x_{j} x_{k} x_{\ell}\right\rangle=\left(\mathbf{A}^{-1}\right)_{i j}\left(\mathbf{A}^{-1}\right)_{k \ell}+\left(\mathbf{A}^{-1}\right)_{i k}\left(\mathbf{A}^{-1}\right)_{j \ell}+\left(\mathbf{A}^{-1}\right)_{i \ell}\left(\mathbf{A}^{-1}\right)_{j k}
$$

which can be confirmed by doing the necessary derivatives. For the general case $\left\langle x_{i} x_{j} \ldots x_{k}\right\rangle$, we have

$$
\left\langle x_{i} x_{j} \ldots x_{k} x_{\ell}\right\rangle=\sum_{\text {Wick }}\left(\mathbf{A}^{-1}\right)_{a b} \ldots\left(\mathbf{A}^{-1}\right)_{c d}
$$

where the indices $\{a, b, \ldots c, d\}$ represent a permutation of $\{i, j, \ldots, k, \ell\}$, and a "Wick sum" is defined as a sum over all permutations of the indices.

## 23.3

Consider the Lagrangian

$$
L=\frac{1}{2} m \dot{x}^{2}(t)-\frac{1}{2} m \omega^{2} x^{2}(t)+f(t) x(t)
$$

where

$$
f(t)= \begin{cases}f_{0} & 0 \leq t \leq T \\ 0 & \text { else }\end{cases}
$$

The amplitude $\mathcal{A}$ for a particle to be in the ground state at $t=0$ and $t=T$ is given by

$$
\mathcal{A}=\int_{x(0)=0}^{x(T)=0} \mathcal{D}[x] \exp \left(i \int_{-\infty}^{\infty} \mathrm{d} t L\right)
$$

Assuming the ground state corresponds to $x=0$, we can do an integration by parts on the first term in the Lagrangian to write

$$
L=\frac{1}{2} x(t)\left[m\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}-\omega^{2}\right)\right] x(t)+f(t) x(t)
$$

Defining

$$
\mathcal{C}=m\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}-\omega^{2}\right)
$$

we have

$$
\mathcal{A}=\int \mathcal{D}[x] \exp \left(i \int_{-\infty}^{\infty} \mathrm{d} t\left(\frac{1}{2} x(t) \mathcal{C} x(t)+f(t) x(t)\right)\right)
$$

which is just an inhomogeneous Gaussian integral. Therefore, the solution is given by

$$
\mathcal{A}=\frac{B}{\sqrt{\operatorname{det} \mathcal{C}}} \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} f(t) G\left(t, t^{\prime}\right) f\left(t^{\prime}\right)\right)
$$

where $G(t, t)$ is the Green's function to $\mathcal{C}$. As was done in the chapter, we can rewrite this to eliminate $B$ using the free particle propagator as

$$
\mathcal{A}=\sqrt{\frac{-i m \omega}{2 \pi \sin \omega T}} \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} f(t) G\left(t, t^{\prime}\right) f\left(t^{\prime}\right)\right)
$$

The Green's function can be written in frequency space as

$$
\tilde{G}(\nu)=\frac{-1}{m} \frac{1}{\nu^{2}-\omega^{2}+i \epsilon}
$$

which we can then inverse Fourier transform to write

$$
G\left(t, t^{\prime}\right)=\frac{-1}{m} \int_{-\infty}^{\infty} \frac{\mathrm{d} \nu}{2 \pi} \frac{e^{-i \nu\left(t-t^{\prime}\right)}}{\nu^{2}-\omega^{2}+i \epsilon}
$$

Our familiarity with the propagator in this form allows us to quickly do the integral by closing the contour either above or below and obtain

$$
G\left(t, t^{\prime}\right)=\frac{1}{2 m \omega}\left(\theta\left(t-t^{\prime}\right) e^{-i \omega\left(t-t^{\prime}\right)}+\theta\left(t^{\prime}-t\right) e^{i \omega\left(t-t^{\prime}\right)}\right)
$$

Since the prefactor in the amplitude is there where we have a source or not, we'll focus on just the exponential piece and write

$$
\begin{aligned}
\mathcal{A} & \sim \exp \left(-\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} f(t) G\left(t, t^{\prime}\right) f\left(t^{\prime}\right)\right) \\
G\left(t, t^{\prime}\right) & =\frac{1}{2 m \omega}\left(\theta\left(t-t^{\prime}\right) e^{-i \omega\left(t-t^{\prime}\right)}+\theta\left(t^{\prime}-t\right) e^{i \omega\left(t-t^{\prime}\right)}\right)
\end{aligned}
$$

With the Green's function in this form, the integral in the exponential is straightforward

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} f(t) G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) & =\frac{f_{0}^{2}}{2 m \omega} \int_{0}^{T} \mathrm{~d} t \int_{0}^{T} \mathrm{~d} t^{\prime}\left(\theta\left(t-t^{\prime}\right) e^{-i \omega\left(t-t^{\prime}\right)}+\theta\left(t^{\prime}-t\right) e^{i \omega\left(t-t^{\prime}\right)}\right) \\
& =\frac{f_{0}^{2}}{m \omega} \int_{0}^{T} \mathrm{~d} t \int_{0}^{t} \mathrm{~d} t^{\prime} e^{-i \omega\left(t-t^{\prime}\right)} \\
& =\frac{f_{0}^{2}}{m \omega} \int_{0}^{T} \mathrm{~d} t \frac{1}{i \omega}\left(1-e^{-i \omega t}\right) \\
& =-\frac{i f_{0}^{2}}{m \omega^{2}}\left(T-\frac{1}{i \omega}\left(1-e^{-i \omega T}\right)\right) \\
& =-\frac{i f_{0}^{2}}{m \omega^{2}}\left[T+\frac{i}{\omega}\left(\cos \frac{\omega T}{2}-i \sin \frac{\omega T}{2}\right) 2 i \sin \frac{\omega T}{2}\right] \\
\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} f(t) G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) & =-\frac{i f_{0}^{2}}{m \omega^{2}}\left[T-\frac{\sin \omega T}{\omega}+i \frac{2}{\omega} \sin ^{2} \frac{\omega T}{2}\right]
\end{aligned}
$$

and therefore we have

$$
\mathcal{A}=\exp \left[\frac{i f_{0}^{2}}{2 m \omega^{2}}\left(T-\frac{\sin \omega T}{\omega}+i \frac{2}{\omega} \sin ^{2} \frac{\omega T}{2}\right)\right]
$$

The probability amplitude follows as

$$
|\mathcal{A}|^{2}=\exp \left(-\frac{2 f_{0}^{2}}{m \omega^{3}} \sin ^{2} \frac{\omega T}{2}\right)
$$

which is the same result obtained in Exercise 22.1 by expanding the S-operator. The imaginary part of the amplitude corresponds to the complex phase the particle acquires from $t=0$ to $t=T$. Physically, this is the term which would lead to interference if we were considering a theory in which multiple particles were emitted and absorbed by the source terms.

