
Chapter 22

The generating functional for fields
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The generating functional (ignoring normalization) is defined as
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where |⌦i is the interacting ground state, and U(t, t
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Recalling the expansion of the position operator in the interaction picture
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we can see that vacuum expectation values with an odd number of position operators will vanish, leaving

only the even powers. Using Wick’s theorem we can then write
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Z[f ] = exp
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This agrees with the diagrammatic method

Z[f ] = exp
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since the Dumbbell diagram shown below is the only connected diagram for this theory

In frequency space, we can write the expression for the diagram by recalling the propagator for the quantum

oscillator of frequency !
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and integrating over ⌫. As for the source terms, their Fourier transform will appear in the integrand
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Since this is a VEV, if we create an excitation with f(⌫), the other source must annihilate it as f(�⌫).
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Alternatively, we could calculate this directly by using the expansion of the position operator
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Recalling the integral representation of the Heaviside function (with the limit as ✏ ! 0 implied)
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and subsequently ⌫ ! �⌫ in the second integrand
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which agrees exactly with the answer using the Feynman rules for this theory. As for
��Z[f ]

��2, this physically
represents the probability of starting and ending in the ground state. Clearly this will depend on f0 and T . We

can solve for this by using the identity
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With this, Z[f ] can be written as

Z[f ] = exp
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Since the principal value of this integral is a real number, it’s contribution to |Z[f ]|
2
will vanish, leaving the

result
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Focusing on the T dependence, a plot of exp
�
� sin

2
x
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can be seen below, which exhibits the same functional

behavior of our solution

The probability to start and end in the ground state is always non-zero, and is equal to unity at T = 0,

which makes sense. Interestingly though, the probability is periodic, and therefore for certain durations of the

interaction, the probability of starting and ending in the ground state is again exactly unity. This makes sense

classically if we imagine putting our system in the minimum of a harmonic oscillator potential with some initial

momentum. It will oscillate back and forth in the potential and therefore we will find it exactly at the minimum

whenever the time elapsed equals a multiple of the period of oscillation.
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we have the dumbbell diagram shown below
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) in the VEV of the S operator
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we can write (neglecting the nonphysical self-interaction terms)
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where we can drop the +i✏ as the denominator is always positive. For this particular source, the interaction

Hamiltonian becomes
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where we’ve used the definition of interaction picture operators to remove their time-dependence. If we then

consider the VEV of the S-matrix, since H0 |0i = 0, the time dependence of HI vanishes and we have
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where E is the energy of the interaction in the ground state. Comparing this with our derived expression

h0|S|0i = exp

⇣
Dumbbell

⌘
= exp

✓
ig

2

Z
dx

0

Z
d
3
p

(2⇡)3

e
ip·(x1�x2)

p2 +m2

◆

we can read o↵ the interaction energy between the two point-like sources is given by
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Defining r = |x1 � x2|, this integral can be performed in spherical coordinates via the residue theorem and

yields
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which is the well-known Yukawa interaction potential, with characteristic length scalem
�1

. Since this energy

is negative, we arrive at the conclusion that a spin zero “particle” of mass m exchanged between two point-like,

static sources produces an attractive force. Since protons and neutrons experience the strong force via the

exchange of a pion (a spin zero particle), this is a rough argument for why the strong force is attractive at the

level of nucleons.


