Chapter 21

Statistical physics: a crash course

For the general partition function

Z(J) = Tr [e-PHA+I4]

we can write
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For the quantum oscillator Hamiltonian

H=wada'a=wN

the partition function is given by

Z n|e BwN+JN|n>
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With this, the thermal expectation value of the number operator is given by
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The forced quantum oscillator has a Lagrangian

L:fmd:Q(t)—%mwx () + f(t)=(t)

Treating the driving term as an interaction in the Hamiltonian framework

Hot) = %mjcz(t) + %moﬂxz(t), H(t) = — f(B)2(t)
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we can work in the interaction picture and write
Hi(t) = —e"ot f(t)x(t)e " = —fr(t)ar(t)

Now, consider a general state |17(t)). Assuming f;(t — —oo) — 0, then |¢;(t = —o0)) can be built up
from the the ground state of the quantum oscillator, |0). For the purposes of this problem, we’ll assume that
as t — —o0, our state is the ground state

[Yp(t = —o0)) = |0)
With this, we can use Dyson’s expansion and work to O(f1(t)) to write

[41(t)) = U(t, —00) |0)

= T[exp {fi /_too ar’ H}(t’)” |0)

[t [ e soie)]

—00

t

dt’ fr(t)zr(t') |0)

[or () = [0) +i /

With this, we can calculate the expectation value of the position operator in this state to O(f;(t))

(W1 (O)er (Oer (1)) = <<0| i [t fn@ o )xf(t) ( 0+ [ at s |o>)

= <0\x1(t)|0>+i/ dt’ fr(t") (0lfxr(t), 21 (t')]|0) + O(f7 (¢))

(Wr@®)lzr(@®)]r(t)) =i /OO dt’ 0t — ') f1(t') Ol[z 1 (£), x1(1)]]0)

Comparing this with the definition of the response function
WrOlerOler @) = [ at x(t =) (0)

we can read off

|X(t =) =0t =) (0l[w1 (), 21 ()]|0) |

Using the decomposition

zr(t) = 217%0 (ae‘m + aTei“’t)
we can evaluate the commutator as
[xr(t), 21 ()] = ﬁ [(aeii“’t + aTei“t>, (aeii“’tl + aTei“’ﬂ)]
_ ﬁ (efiw(tft’) _ eiw(t—t’)) la, al]

[z (t), 2 ()] = % sin (w(t —t'))

which yields a response function

XE—t) = % sin (w(t — ) 0(t — ¢')

At non-zero T, we can follow a similar procedure as above to and relate the density matrix p(t) to the
equilibrium density matrix p; in an expansion up to O(fr(¢)). This yields an expression for the response
function

x(t =) =0t —t') {[xr(t), z1(t)]),
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Evaluating the expectation value yields

(ler (), er ()], = o T (N fa (0)21(4)])
= (1= e7) 3 e ([ (1), 21 ()] n)

= m—; sin(w(t —t'))(1 - eiﬁ“’) Z ePen (n|n)

(lar(8), (), = — sin(ew(t )

The fact that the results are the same is not too surprising, as the result at zero temperature did not depend
on n. Therefore the response function is simply

1) = % sin (w(t — ) O(t — ¢')

We can compare this result to that of the correlation function defined by

1

S:§

{zr(t),z1(1)})

Taking the expectation value first at zero temperature, we have
S = 1 <{ (ae—iwt' + aTeiwt')7 (ae—iwt =+ aTeiwt) })

T dmw

= 74771%0 ((aaT + ata)ei“’(t_t/) + (anr + aTa)e_i“’(t_t/)>

= ﬁ {(142N) cos(w(t —t")))

5= L costote — ) (13 + 1)

For the ground state, we have

_ 1 oy
S = Yo cos(w(t —t"))

At non-zero temperature, we can simply evaluate the expectation value in the above equation in thermal
equilibrium

5= L costote— 0, + 1)

mw

Using the result of the previous problem, we obtain

=l os(wlt— ¢ 1 1
S—mwc%(w(t t))(eﬁw—1+2)

From this, we learn that for the quantum oscillator, the two-time position response function does not
distinguish thermal and quantum fluctuations, while the two-time position correlation function does and reduces
to the case of purely quantum fluctuations in the limit § — oo.

Consider the diffusion equation

(% - DV2>n(x, t)=0

The Green’s function for this equation satisfies

(5~ P¥*)6lx—y.1) = dlx = y)a(0)
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which for ¢ > 0 is equivalent to
ngVQ Gx—y,t)=0
Bt y7 -
Taking a Laplace transform in time with a purely imaginary Laplace variable, s = —iw, takes us to the

frequency domain, yielding

—iwG(x —y,w) — G(x —y,0) = DV2G(x — y,w) =0

For the boundary condition, G(x —y,0) = §(x —y), we have

—iwG(x —y,w) — DV2G(x —y,w) = 6(x —y)

which we can then solve via a Fourier transform in space

—iwG(q,w) + DG*G(q,w) = 1

G(q7 w) =

1

—iw + Dq?




