
Chapter 21

Statistical physics: a crash course
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For the quantum oscillator Hamiltonian
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With this, the thermal expectation value of the number operator is given by
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21.2

The forced quantum oscillator has a Lagrangian
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Treating the driving term as an interaction in the Hamiltonian framework
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mẋ

2
(t) +

1

2
m!

2
x
2
(t), H

0
(t) = �f(t)x(t)

70



CHAPTER 21. STATISTICAL PHYSICS: A CRASH COURSE 71

we can work in the interaction picture and write
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Now, consider a general state | I(t)i. Assuming fI(t ! �1) ! 0, then | I(t ! �1)i can be built up

from the the ground state of the quantum oscillator, |0i. For the purposes of this problem, we’ll assume that
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With this, we can calculate the expectation value of the position operator in this state to O(fI(t))
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Comparing this with the definition of the response function
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Using the decomposition
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we can evaluate the commutator as
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which yields a response function
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At non-zero T , we can follow a similar procedure as above to and relate the density matrix ⇢(t) to the

equilibrium density matrix ⇢t in an expansion up to O(fI(t)). This yields an expression for the response

function
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Evaluating the expectation value yields
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The fact that the results are the same is not too surprising, as the result at zero temperature did not depend

on n. Therefore the response function is simply
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We can compare this result to that of the correlation function defined by
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Taking the expectation value first at zero temperature, we have
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For the ground state, we have
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At non-zero temperature, we can simply evaluate the expectation value in the above equation in thermal

equilibrium
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Using the result of the previous problem, we obtain
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From this, we learn that for the quantum oscillator, the two-time position response function does not

distinguish thermal and quantum fluctuations, while the two-time position correlation function does and reduces

to the case of purely quantum fluctuations in the limit � ! 1.

21.3

Consider the di↵usion equation
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The Green’s function for this equation satisfies
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which for t > 0 is equivalent to
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Taking a Laplace transform in time with a purely imaginary Laplace variable, s = �i!, takes us to the

frequency domain, yielding
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which we can then solve via a Fourier transform in space
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