Chapter 18

The S-matrix

A spin-1/2 particle in a constant magnetic field subjected to a small, perpendicular perturbation has a
Hamiltonian

H= ’YB()SZ +vB (S'z cos(yBot) + S'y sin(vBot))
Defining the natural frequency w = v By, this has the form
H= wgz +vB; (S} coswt + S‘y sin wt)
This Hamiltonian can be easily split into a free part and an interacting part, H=H,+H , where
Hy=wS,, H = ~vB; (5‘1 coswt + S'y sin wt)
With this, we can express the Hamiltonian in the interacting picture

Hy = giHot fy/ ,—iHot

H = yBleiWS’t (5’1 coswt + Sy sin wt) e~ iwSst

This can be simplified using the definitions of the raising and lowering spin operators S, =8, + iS'y

1 & N . ) A . . S
H; = 5,)/Blezwszt |:Sz (ezwt + e—zwt) _ ZSy (ezwt _ e—zwt)]e—zwszt
1 & . N N . N R o
_ 5’}/3161w52t |:ew)t (Sx _ ZSy) + e—zwt (Sz + iSy)}e_WSZt
ﬁ'[ _ %,yBlein‘zt (eiwt‘év7 + e—iwtg+>e—iw§zt

The raising and lowering operators in the interaction picture are given by
eleztS+efwazt _ ezth+

eiw,g'ztg_efiws‘zt — efithv_
which further simplifies the Hamiltonian to

1 ) A RN
HI — 5731 (6“’”671th_ + 677’wt€zwt5+)

Hy

3731 (5-+85))

With this, the interaction picture time evolution operator can be written simply as

Up(ta, t) = T{exp (—i /: dtﬁf)}

Ur(ta,t1) = exp (*WBI (S— + §+) (t2 — tl))
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We can now calculate transition amplitudes in the interaction picture. If at time ¢ = 0, the state is given by
|s,m) = |53.5) =)
then the amplitude that it will be found in the same state at time ¢ is given by
A= (r)|Ur(1)[1(0))
= ($(t)e” M1 (2)]0(0))
=

ﬂefws}temel(S_+S*+)t/2 I

A= efiwt/Z <T|efi'yB1(S,+S+)t/2|T>

Expanding out the exponential, we find

. . 2
A= e ™2 (1)1 + (LWQBILL) (S‘_ + S‘+) . <_wBlt) (S_ + $+>2 o)

A\ 2
Note that the only combinations of operators which can yield a non-zero matrix element are
S ~ A N2 /. a3
S, 8, (s+s_) : (s+s_) , etc.

which act as follows

S =30+ - 3G - =W
Sl =y/30+3) - (-D(s+D)m =11

Therefore, the terms in the expansion will produce

: 1 [ —ivBit\® 1 [—ivBit\"*
A_eiwt/2|:1+< 1y 1) +7< 1y 1) +...

2! 2 4! 2 (i)

, 1 (vBit\® 1 [~vBit\"
_—iwt/2 | L (YD1 1 (7B
A=e {1 2!< 2 ) +4!< 2 ) +

Defining the frequency €2 = B, this yields

A=e ™2 cos &

and therefore a probability of

Qt
|A|? = cos? >

As for the amplitude that the particle will be found spin down at time ¢, we can use the same reasoning as
above to compute the answer more quickly. We have the expansion

, —iyB N 1/ —ivBit\? /s 4 \2
Azewt/2<u1+<%1t) (S‘+S+)+E( WQ lt) (S_+S+) +..01

Now, the only combinations of operators which will yield a non-zero matrix element are
~ PN N A A \2 4
S, (S_S+)S_, (s_s+) S, ete.

Therefore, the expansion will yield
. . 3
_ iwt/2 —iQt 1 —iQt
A=e [(2 + 3l ) +...

Qt
A]* = sin® =~

(L) = et/ sin =)

with probability
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To calculate (S.), we need the explicit form of the state |¢(t)). Using the results of the previous part, we
can construct the state as follows. We know if we start in the state [1/(0)) = |1), the state will evolve into

Qt R Y7
[%(2)) = cos 5 IT) +isin == [])
If we had started in the state |1)(0)) = |]), then by the symmetry of the problem, we would have obtained
Qt Y
[0(2)) = cos— 1) +isin— 1)

Therefore, if we consider the most general initial state

[O) =alt) +81),  lal® +18 =
we have the state as a function of time
Qt Qt
[(t)) = acos —- +zﬁsm— 1) + 60033 +zasm— 1)
Note these states are in the Schrodinger picture, hence the lack of the phases present in the previous part

when working in the interaction picture. Since expectation values are picture-independent, we can work in the
Schrédinger picture with no loss of generality. With this, we can calculate

(S.) = (¥ (HSW())
N P P P
Ka cos L | iBsin 7) Iy <[3 cos 2+ iaxsin %) |¢>]
-2 [(a cos T _igr sm%) (acos L zﬂsin%)
(ﬁ* cos "0 — ia sin %) (ﬁcos = +z’asin%ﬂ
7%{ laf? — |82 <cos %—sinz %>+z’(a*ﬁ— af* )(25111%003%)]
(823 = 3 (Iaf ~ 87 ) cost2t + L (a5 — 08 sin

Using the relationship

|1/)[(i00)> = ‘w>simpleworld = |w>

we can write

|to1(+00)) = 5 |11 (—o00))
Y1 (+00)) = S|v)

If the collection of “simpleworld” states forms an orthonormal basis, we can insert a resolution of the identity
and obtain

[Wr(+00)) = | Y [oXel | S |v)
¢

[r(+00)) = > (8IS]¢) |¢)
¢
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For a string of bosonic operators which are time-independent, the string is identical to the time-ordering of
the string

However, we can now implement Wick’s theorem and write

Iﬁ
Ezpdl;dk =N {apa ay + Gpa ak + apa ax + apAT Ak}

aplx + [ap, a%] ax + [ap, ax] al) + [al, an] ap

apax + axd(p — q) — apd(q — k)‘

The string of bosonic operators can be written using standard Bose commutation relations as

_ 613*@136* b+ 1)g

= 8%+1)g66*+%g+g

— bThg (bTb+1)+g(bTb+1) +btbg + ¢
= bbbt gb + 3bThg + 2¢

= bt 13U3+1)g13+3z3fég+2g

S
Q>
S
S
7
S
S
S

g + 4btbg + 24

Using Wick’s theorem, we can normal order this string as follows

A | — 1 L r—ﬁ—l F_Hﬁ
bgbbibt = {bgbb* bt + bgbbTbT 4 bgbbTh + bgbbTbT + bbbt + bgbbTbT + bbbt bt

|bgbb'5" = 515'8bg + 4btbg + 29

which is the same result as normal ordering the string by hand.

Given the VEV of fermionic operators, we can apply Wick’s theorem as follows

(01h, —qha-ratpatosl0) = (OIT[eh, _qeh, ratpatp: |10)

S P I S« P B
p1—a%p2+qCP20p1 + Cp1-q%p2a+qCP2Cp1 + ®p1—a pa+q©P2Cp1

. R R —
= (O|N|éf }m)

(01h, b +alpspi 0) = = (OIT [¢h, _q2pa 10} (OIT [¢h,  q2p, |10} + (OIT [¢h, _q2p.]10) (OIT |2}, 4200 ] 10)




