Chapter 16

Propagators and Green's functions

16.1

For this potential, the wave function vanishes outside the interval $x \in(0, a)$, and inside satisfies

$$
H|\phi\rangle=E|\phi\rangle \rightarrow-\frac{1}{2 m} \frac{\mathrm{~d}^{2} \phi(x)}{\mathrm{d} x^{2}}=E \phi(x)
$$

Defining $k=\sqrt{2 m E}$, this equation has normalized solutions

$$
\phi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(k_{n} x\right)
$$

where k_{n} takes the discrete values $k_{n}=\frac{n \pi}{a}, n \in \mathbb{Z}^{+}$. This yields discrete energy levels

$$
E_{n}=\frac{\pi^{2} n^{2}}{2 m a^{2}}
$$

The general form of a momentum-time representation of the retarded Green's function is given by

$$
\begin{aligned}
G^{+}\left(q, t_{x} ; p, t_{y}\right) & =\theta\left(t_{x}-t_{y}\right)\langle q| e^{-i H\left(t_{x}-t_{y}\right)}|p\rangle \\
& =\theta\left(t_{x}-t_{y}\right) e^{-i E_{p}\left(t_{x}-t_{y}\right)} \delta(p-q) \\
G^{+}\left(p ; t_{x}, t_{y}\right) & =\theta\left(t_{x}-t_{y}\right) e^{-i E_{p}\left(t_{x}-t_{y}\right)}
\end{aligned}
$$

Using the fact that the momentum and energy come in discrete levels, we can write this as

$$
G^{+}\left(n ; t_{x}, t_{y}\right)=\theta\left(t_{x}-t_{y}\right) e^{-i\left(\frac{n^{2} \pi^{2}}{2 m a^{2}}\right)\left(t_{x}-t_{y}\right)}
$$

Lastly, we can obtain a momentum-energy representation by performing a Fourier transform in time (shifting the energies infinitesimally into the complex plane for convergence)

$$
\begin{aligned}
G^{+}(n, \omega) & =\int_{-\infty}^{\infty} \mathrm{d} t_{x} G^{+}\left(n ; t_{x}, t_{y}\right) e^{i \omega\left(t_{x}-t_{y}\right)} \\
& =\int_{t_{y}}^{\infty} \mathrm{d} t_{x} e^{i\left(\omega-\frac{n^{2} \pi^{2}}{2 m a^{2}}+i \epsilon\right)\left(t_{x}-t_{y}\right)} \\
& =\left.\frac{1}{i\left(\omega-\frac{n^{2} \pi^{2}}{2 m a^{2}}+i \epsilon\right)} e^{i\left(\omega-\frac{n^{2} \pi^{2}}{2 m a^{2}}+i \epsilon\right)\left(t_{x}-t_{y}\right)}\right|_{t_{y}} ^{\infty} \\
G^{+}(n, \omega) & =\frac{i}{\omega-\frac{n^{2} \pi^{2}}{2 m a^{2}}+i \epsilon}
\end{aligned}
$$

16.2

Starting with the position-time representation of the retarded Green's function

$$
G_{0}^{+}\left(t_{x}, x ; t_{y}, y\right)=\theta\left(t_{x}-t_{y}\right) \sum_{n} \phi_{n}(x) \phi_{n}^{*}(y) e^{-i E_{n}\left(t_{x}-t_{y}\right)}
$$

we can switch to a position-energy representation by performing a Fourier transform in time with a damping factor as follows

$$
\begin{aligned}
G_{0}^{+}(x, y ; E) & =\int_{-\infty}^{\infty} \mathrm{d} t_{x} G_{0}^{+}\left(t_{x}, x ; t_{y}, y\right) e^{i E\left(t_{x}-t_{y}\right)} e^{-\epsilon\left(t_{x}-t_{y}\right)} \\
& =\sum_{n} \phi_{n}(x) \phi_{n}^{*}(y) \int_{t_{y}}^{\infty} \mathrm{d} t_{x} e^{i\left(E-E_{n}+i \epsilon\right)\left(t_{x}-t_{y}\right)} \\
& =\left.\sum_{n} \phi_{n}(x) \phi_{n}^{*}(y) \frac{1}{i\left(E-E_{n}+i \epsilon\right)} e^{i\left(E-E_{n}+i \epsilon\right)\left(t_{x}-t_{y}\right)}\right|_{t_{y}} ^{\infty} \\
G_{0}^{+}(x, y ; E) & =\sum_{n} \frac{i \phi_{n}(x) \phi_{n}^{*}(y)}{E-E_{n}+i \epsilon}
\end{aligned}
$$

However, we can perform similar calculations without the damping factor by using the following representation of the heaviside function

$$
\theta(t)=i \int_{-\infty}^{\infty} \frac{\mathrm{d} z}{2 \pi} \frac{e^{-i z t}}{z+i \epsilon}
$$

Starting from the momentum-time representation of the Green's function

$$
G_{0}^{+}(p, t)=\theta(t) e^{-i E_{p} t}
$$

we can obtain the momentum-energy representation through a Fourier transform in time

$$
\begin{aligned}
G_{0}^{+}(p, E) & =\int_{-\infty}^{\infty} \mathrm{d} t G_{0}^{+}(p, t) e^{i E t} \\
& =i \int_{-\infty}^{\infty} \frac{\mathrm{d} z}{2 \pi} \frac{1}{z+i \epsilon} \int_{-\infty}^{\infty} \mathrm{d} t e^{i\left(E-E_{p}-z\right) t} \\
& =i \int_{-\infty}^{\infty} \mathrm{d} z \frac{1}{z+i \epsilon} \delta\left(E-E_{p}-z\right) \\
G_{0}^{+}(p, E) & =\frac{i}{E-E_{p}+i \epsilon}
\end{aligned}
$$

16.3

For a one-dimension driven harmonic oscillator, the equation of motion is given by

$$
m\left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{0}^{2}\right) A(t-u)=f(t)
$$

Considering a driving force of the form $f(t)=\tilde{F}(\omega) e^{-i \omega(t-u)}$. The particular solution can be found by inserting the ansatz

$$
A(t-u)=\mathcal{A}(\omega) e^{-i \omega(t-u)}
$$

With this, we obtain the condition for the amplitude

$$
\begin{gathered}
-m\left(\omega^{2}-\omega_{0}^{2}\right) \mathcal{A}(\omega) e^{-i \omega(t-u)}=\tilde{F}(\omega) e^{-i \omega(t-u)} \\
\mathcal{A}(\omega)=-\frac{\tilde{F}(\omega)}{m} \frac{1}{\omega^{2}-\omega_{0}^{2}}
\end{gathered}
$$

Therefore, the general solution is given by

$$
A(t-u)=-\frac{\tilde{F}(\omega)}{m} \frac{e^{-i \omega(t-u)}}{\omega^{2}-\omega_{0}^{2}}+B(t)
$$

where $B(t)$ satisfies the homogeneous equation

$$
m\left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{0}^{2}\right) B(t)=0
$$

The Green's function for this differential equation is the solution to

$$
m\left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{0}^{2}\right) G(t, u)=\delta(t-u)
$$

This resembles the driven differential equation if we represent the delta function as an integral

$$
m\left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{0}^{2}\right) G(t, u)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega(t-u)}
$$

We can solve this by first finding the Fourier transform of the Green's function. Doing this, we obtain

$$
\begin{gathered}
m\left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{0}^{2}\right) \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{G}(\omega) e^{-i \omega(t-u)}=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega(t-u)} \\
\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi}\left(m\left(-\omega^{2}+\omega_{0}^{2}\right) \tilde{G}(\omega)\right) e^{-i \omega(t-u)}=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega(t-u)} \\
\tilde{G}(\omega)=-\frac{1}{m} \frac{1}{\omega^{2}-\omega_{0}^{2}}
\end{gathered}
$$

Fourier transforming back, we obtain

$$
\begin{aligned}
G(t, u) & =\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{G}(\omega) e^{-i \omega(t-u)} \\
G(t, u) & =-\frac{1}{m} \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{e^{-i \omega(t-u)}}{\omega^{2}-\omega_{0}^{2}}
\end{aligned}
$$

Assuming that $t \geq 0$ for the dynamics of the problem, the initial conditions $G(0, u)=\dot{G}(0, u)=0$ are equivalent to requiring causality in $G(t, u)$. This can be thought of as $G(0, u)=0$ enforcing that the function vanish at $t=0$, and $\dot{G}(0, u)=0$ enforcing that any flow from $t<0$ vanish. With this, the expression for $G^{+}(t, u)$ is most easily obtained through complex analysis. With the poles of the function at $\omega= \pm \omega_{0}$ and $t-u>0$, we can close the contour in the lower half of the complex ω-plane, and deform the contour up and around the poles so as to include them in the closed contour

Applying Cauchy's residue theorem, we find

$$
\begin{aligned}
G^{+}(t, u) & =-\frac{1}{m} \oint \frac{\mathrm{~d} \omega}{2 \pi} \frac{e^{-i \omega(t-u)}}{\left(\omega+\omega_{0}\right)\left(\omega-\omega_{0}\right)} \\
& =\frac{i}{m}\left[\left.\frac{e^{-i \omega(t-u)}}{\omega-\omega_{0}}\right|_{\omega=-\omega_{0}}+\left.\frac{e^{-i \omega(t-u)}}{\omega+\omega_{0}}\right|_{\omega=\omega_{0}}\right] \\
& \frac{1}{m \omega_{0}} \frac{e^{i \omega_{0}(t-u)}-e^{-i \omega_{0}(t-u)}}{2 i} \\
G^{+}(t, u) & =\frac{1}{m \omega_{0}} \sin \omega_{0}(t-u)
\end{aligned}
$$

Lastly, for a driving force $f(t)=F_{0} \sin \omega_{0} t$, we can obtain the amplitude as a function of time through the relation

$$
\begin{aligned}
A(t) & =\int_{0}^{t} \mathrm{~d} u G^{+}(t, u) f(u) \\
& =\frac{F_{0}}{m \omega_{0}} \int_{0}^{t} \mathrm{~d} u \sin \left(\omega_{0}(t-u)\right) \sin \left(\omega_{0} u\right) \\
A(t) & =\frac{F_{0}}{2 m \omega_{0}^{2}}\left(\sin \left(\omega_{0} t\right)-\omega_{0} t \cos \left(\omega_{0} t\right)\right)
\end{aligned}
$$

16.4

Considering the Green's function for the Helmholtz differential operator

$$
\left(\nabla^{2}+\mathbf{k}^{2}\right) G_{\mathbf{k}}(\mathbf{x})=\delta^{(3)}(\mathbf{x})
$$

we can move to momentum space as follows

$$
\begin{gathered}
\left(\nabla^{2}+\mathbf{k}^{2}\right) \int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \tilde{G}_{\mathbf{k}}(\mathbf{q}) e^{-i \mathbf{q} \cdot \mathbf{x}}=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} e^{-i \mathbf{q} \cdot \mathbf{x}} \\
\int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}}\left(-\mathbf{q}^{2}+\mathbf{k}^{2}\right) \tilde{G}_{\mathbf{k}}(\mathbf{q}) e^{-i \mathbf{q} \cdot \mathbf{x}}=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} e^{-i \mathbf{q} \cdot \mathbf{x}} \\
\left(-\mathbf{q}^{2}+\mathbf{k}^{2}\right) \tilde{G}_{\mathbf{k}}(\mathbf{q})=1 \\
\tilde{G}_{\mathbf{k}}(\mathbf{q})=\frac{1}{\mathbf{k}^{2}-\mathbf{q}^{2}}
\end{gathered}
$$

In position space, the Green's function for "outgoing" waves is given by

$$
G_{\mathbf{k}}^{+}(\mathbf{x})=-\frac{1}{4 \pi} \frac{e^{i|\mathbf{k}||\mathbf{x}|}}{|\mathbf{x}|}
$$

This can be confirmed by taking the Fourier transform and making connection with the previous result. Employing a damping factor, we can write the Fourier transform as

$$
\begin{aligned}
\tilde{G}_{\mathbf{k}}^{+}(\mathbf{q}) & =\int \mathrm{d}^{3} x G_{\mathbf{k}}^{+}(\mathbf{x}) e^{i \mathbf{q} \cdot \mathbf{x}} e^{-\epsilon|\mathbf{x}|} \\
& =-\frac{1}{4 \pi} \int \frac{\mathrm{~d}^{3} x}{|\mathbf{x}|} e^{i(|\mathbf{k}|+i \epsilon)|\mathbf{x}|} e^{i|\mathbf{q}||\mathbf{x}| \cos \vartheta} \\
& =-\frac{1}{4 \pi} \int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{-1}^{1} \mathrm{~d}(\cos \vartheta) \int_{0}^{\infty} \frac{\mathrm{d} x x^{2}}{x} e^{i(|\mathbf{k}|+i \epsilon) x} e^{i|\mathbf{q}| x \cos \vartheta} \\
& =-\frac{1}{2} \int_{0}^{\infty} \mathrm{d} x x e^{i(|\mathbf{k}|+i \epsilon) x} \frac{1}{i|\mathbf{q}| x}\left(e^{i|\mathbf{q}| x}-e^{-i|\mathbf{q}| x}\right) \\
& =-\frac{1}{|\mathbf{q}|} \int_{0}^{\infty} \mathrm{d} x e^{i(|\mathbf{k}|+i \epsilon) x} \sin (|\mathbf{q}| x) \\
\tilde{G}_{\mathbf{k}}^{+}(\mathbf{q}) & =-\frac{1}{|\mathbf{q}|} \frac{|\mathbf{q}|}{|\mathbf{q}|^{2}-(|\mathbf{k}|+i \epsilon)^{2}}
\end{aligned}
$$

Since ϵ is an infinitesimal and $r \epsilon=\epsilon \forall r \in \mathbb{R}$, this can be rewritten as

$$
\tilde{G}_{\mathbf{k}}^{+}(\mathbf{q})=\frac{1}{\mathbf{k}^{2}-\mathbf{q}^{2}+i \epsilon}
$$

We can indeed go backwards and take the inverse Fourier transform of our result, yielding

$$
\begin{aligned}
G_{\mathbf{k}}^{+}(\mathbf{x}) & =\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} G_{\mathbf{k}}^{+}(\mathbf{q}) e^{-i \mathbf{q} \cdot \mathbf{x}} \\
& =-\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \frac{e^{-i \mathbf{q} \cdot \mathbf{x}}}{\mathbf{q}^{2}-\mathbf{k}^{2}-i \epsilon} \\
& =\frac{-1}{(2 \pi)^{2}} \int_{-1}^{1} \mathrm{~d}(\cos \vartheta) \int_{0}^{\infty} \mathrm{d} q q^{2} \frac{e^{-i q|\mathbf{x}| \cos \vartheta}}{q^{2}-\mathbf{k}^{2}-i \epsilon} \\
& =\frac{-1}{4 \pi^{2}} \int_{0}^{\infty} \mathrm{d} q \frac{q^{2}}{-i q|\mathbf{x}|} \frac{1}{q^{2}-\mathbf{k}^{2}-i \epsilon}\left(e^{-i q|\mathbf{x}|}-e^{i q|\mathbf{x}|}\right) \\
G_{\mathbf{k}}^{+}(\mathbf{x}) & =\frac{i}{4 \pi^{2}|\mathbf{x}|} \int_{-\infty}^{\infty} \mathrm{d} q \frac{q e^{i q|\mathbf{x}|}}{q^{2}-\mathbf{k}^{2}-i \epsilon}
\end{aligned}
$$

A natural factorization of the denominator yields

$$
G_{\mathbf{k}}^{+}(\mathbf{x})=\frac{i}{4 \pi^{2}|\mathbf{x}|} \int_{-\infty}^{\infty} \mathrm{d} q \frac{q e^{i q|\mathbf{x}|}}{(q-(|\mathbf{k}|+i \epsilon))(q+(|\mathbf{k}|-i \epsilon))}
$$

Since $|\mathbf{x}|>0$, we can close the contour in the upper half of the complex- q plane as shown below

This yields

$$
\begin{aligned}
G_{\mathbf{k}}^{+}(\mathbf{x}) & =\frac{i}{4 \pi^{2}|\mathbf{x}|} \oint \mathrm{d} q \frac{q e^{i q|\mathbf{x}|}}{(q-(|\mathbf{k}|+i \epsilon))(q+(|\mathbf{k}|-i \epsilon))} \\
& =-\left.\frac{1}{2 \pi|\mathbf{x}|} \frac{q e^{i q|\mathbf{x}|}}{q+(|\mathbf{k}|-i \epsilon)}\right|_{q=|\mathbf{k}|+i \epsilon} \\
G_{\mathbf{k}}^{+}(\mathbf{x}) & =-\frac{1}{4 \pi} \frac{e^{i|\mathbf{k}| \mathbf{x} \mid} e^{-\epsilon|\mathbf{x}|}}{|\mathbf{x}|}\left(1+i \frac{\epsilon}{|\mathbf{k}|}\right)
\end{aligned}
$$

Taking the limit $\epsilon \rightarrow 0$, we recover the Green's function for the Helmholtz operator in position space corresponding to "outgoing" waves

$$
G_{\mathbf{k}}^{+}(\mathbf{x})=-\frac{1}{4 \pi} \frac{e^{i|\mathbf{k}||\mathbf{x}|}}{|\mathbf{x}|}
$$

Had we considered considered incoming waves, all that would change is the replacement $|\mathbf{k}| \rightarrow-|\mathbf{k}|$. This would cause $\epsilon \rightarrow-\epsilon$ in the denominator of the momentum-space Green's function, and consequently the locations of the poles would switch in terms of which is above and which is below the real q axis. This would ultimately change which residue is calculated and return a position-space Green's function with a negative exponent, perfectly agreeing with the initial change to the direction of the momentum.

