
Chapter 16

Propagators and Green’s functions

16.1

For this potential, the wave function vanishes outside the interval x 2 (0, a), and inside satisfies
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The general form of a momentum-time representation of the retarded Green’s function is given by
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Using the fact that the momentum and energy come in discrete levels, we can write this as
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Lastly, we can obtain a momentum-energy representation by performing a Fourier transform in time (shifting

the energies infinitesimally into the complex plane for convergence)
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16.2

Starting with the position-time representation of the retarded Green’s function
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we can switch to a position-energy representation by performing a Fourier transform in time with a damping

factor as follows
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However, we can perform similar calculations without the damping factor by using the following represen-

tation of the heaviside function
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Starting from the momentum-time representation of the Green’s function

G
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we can obtain the momentum-energy representation through a Fourier transform in time
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16.3

For a one-dimension driven harmonic oscillator, the equation of motion is given by
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A(t� u) = f(t)

Considering a driving force of the form f(t) = F̃ (!)e
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. The particular solution can be found by

inserting the ansatz
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With this, we obtain the condition for the amplitude
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Therefore, the general solution is given by
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where B(t) satisfies the homogeneous equation
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The Green’s function for this di↵erential equation is the solution to
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This resembles the driven di↵erential equation if we represent the delta function as an integral
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We can solve this by first finding the Fourier transform of the Green’s function. Doing this, we obtain
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Fourier transforming back, we obtain
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Assuming that t � 0 for the dynamics of the problem, the initial conditions G(0, u) = Ġ(0, u) = 0 are

equivalent to requiring causality in G(t, u). This can be thought of as G(0, u) = 0 enforcing that the function

vanish at t = 0, and Ġ(0, u) = 0 enforcing that any flow from t < 0 vanish. With this, the expression for

G
+
(t, u) is most easily obtained through complex analysis. With the poles of the function at ! = ±!0 and

t� u > 0, we can close the contour in the lower half of the complex !�plane, and deform the contour up and

around the poles so as to include them in the closed contour
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Applying Cauchy’s residue theorem, we find
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Lastly, for a driving force f(t) = F0 sin!0t, we can obtain the amplitude as a function of time through the

relation

A(t) =

Z
t

0
duG

+
(t, u)f(u)

=
F0

m!0

Z
t

0
du sin(!0(t� u)) sin(!0u)

A(t) =
F0

2m!
2
0

⇣
sin(!0t)� !0t cos(!0t)

⌘

16.4

Considering the Green’s function for the Helmholtz di↵erential operator
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we can move to momentum space as follows
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In position space, the Green’s function for “outgoing” waves is given by

G
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This can be confirmed by taking the Fourier transform and making connection with the previous result.

Employing a damping factor, we can write the Fourier transform as
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Since ✏ is an infinitesimal and r✏ = ✏ 8r 2 , this can be rewritten as
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We can indeed go backwards and take the inverse Fourier transform of our result, yielding
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A natural factorization of the denominator yields
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Since |x| > 0, we can close the contour in the upper half of the complex-q plane as shown below
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Taking the limit ✏ ! 0, we recover the Green’s function for the Helmholtz operator in position space

corresponding to “outgoing” waves

G
+
k (x) = �

1

4⇡

e
i|k||x|

|x|

Had we considered considered incoming waves, all that would change is the replacement |k| ! �|k|. This

would cause ✏ ! �✏ in the denominator of the momentum-space Green’s function, and consequently the

locations of the poles would switch in terms of which is above and which is below the real q axis. This would

ultimately change which residue is calculated and return a position-space Green’s function with a negative

exponent, perfectly agreeing with the initial change to the direction of the momentum.


