Chapter 9

The translation operator is given by

Ua) = e~iPa

In this simple form, the generator of this transformation, p, can be expressed as the following derivative
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For the representations of Lorentz boosts shown below
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The generators of these transformations can be represented as follows
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sinh¢? 0
0 0
cosh¢? 0
0 1
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A infinitesimal boost ¢’ along the 27 axis can be expressed as successive boosts along the three cardinal
axes. For infinitesimal boosts we have

coshp ~1, sinh¢~ ¢

Therefore, we have
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Rotations can be represented as
10 0 0 1 0 0 0
n_ |01 0 0 oy |0 cosf? 0 —sin6?
R(0) = 0 0 cosf' sind! |’ R(67) = 0 0 1 0
0 0 —sinf' cosf? 0 sinf? 0 cosb?

1 0 0 0
0 cos@® sinf® 0
0 —sing® cos®® 0
0 0 0 1
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A infinitesimal rotation #7 about the z7 axis can be expressed as successive rotations about the three cardinal
axes. For infinitesimal rotations we have

cos~1, sinf=~0
Therefore, we have

A7), = A(0")" A (67)° 5 A(6°)7,
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Using this, a general infinitesimal Lorentz transformation can be written as
A =A@ A7),
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This tensor, when made doubly contravariant or covariant, is anti-symmetric
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We can write an explicit relationship between ¢%, 8% and w* as follows

(bi — w()i

which is easily verified just by looking at w*”. As for #°, we have

0 = -
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where summation is implied over j, k. This we can check by hand

ol — —%(w% _ w32)
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Under a Poincaré transformation, a function will transform as

f@') = f(@) + a"0uf(x) + W', 2" 0, f(x)

Since wy, = —wy,, we can write this as

f(@) = [1+a"0, + g" wx,2"0,] f(z)
1+ 00, + a0
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1+a”0, + %w,\y (1”8)‘ — m/\a”)} f(z)
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1+a*0, — gww(x“’f)” — 17”8“)} f(z)
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If we define the generators of the Poincaré group as p, = —i0,, and M*” = —i(z"0” — 2¥0"), then we can

write this as

£ = 1= o + S | 1)

mce enerates Lorentz transrormation, 1t can be relate ) € generators oI rotations an OOStTS as
Since M*” generates Lorentz transformation, it can be related to the generators of rotati d boost
0 1 ijk Jk 0 07
=gt K= M

Putting these together with how w*” relations to rotations and boosts, we can write
Wy MM = QwOMMO" + ZwiHMj’“
= 2w0; M + 2w;; M
W MM = —2¢; K* + 20w;; MY

Putting together 6; and J?, we have
0 % 1 ijk mn
i J' = 1€ CimnWikM
1, )
= 5 (00,0 = 807, Jwju M
1 ik kj
= Swik(M7* = M*)
QZJZ = UijMjk

Therefore, we have

W MM = =24, K" + 20,
f%wwM“” = —i(Ji; — Kidy)

exp (*%wuuM"’”) = ¢ I 0-K9)




