Chapter 9

9.1

The translation operator is given by

$$
\hat{U}(\mathbf{a})=e^{-i \hat{\mathbf{p}} \cdot \mathbf{a}}
$$

In this simple form, the generator of this transformation, $\hat{\mathbf{p}}$, can be expressed as the following derivative

$$
\hat{\mathbf{p}}=\left.i \frac{\partial \hat{U}}{\partial \mathbf{a}}\right|_{\mathbf{a}=0}
$$

9.2

For the representations of Lorentz boosts shown below

$$
\begin{array}{r}
D\left(\phi^{1}\right)=\left(\begin{array}{cccc}
\cosh \phi^{1} & \sinh \phi^{1} & 0 & 0 \\
\sinh \phi^{1} & \cosh \phi^{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad D\left(\phi^{2}\right)=\left(\begin{array}{ccccc}
\cosh \phi^{2} & 0 & \sinh \phi^{2} & 0 \\
0 & 1 & 0 & 0 \\
\sinh \phi^{2} & 0 & \cosh \phi^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
D\left(\phi^{3}\right)=\left(\begin{array}{cccc}
\cosh \phi^{3} & 0 & 0 & \sinh \phi^{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \phi^{3} & 0 & 0 & \cosh \phi^{3}
\end{array}\right)
\end{array}
$$

The generators of these transformations can be represented as follows

$$
K^{1}=-\left.i \frac{\partial D\left(\phi^{1}\right)}{\partial \phi^{1}}\right|_{\phi^{1}=0}=-i\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
K^{2}=-\left.i \frac{\partial D\left(\phi^{2}\right)}{\partial \phi^{2}}\right|_{\phi^{2}=0}=-i\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
K^{3}=-\left.i \frac{\partial D\left(\phi^{3}\right)}{\partial \phi^{3}}\right|_{\phi^{3}=0}=-i\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

9.3

A infinitesimal boost ϕ^{j} along the x^{j} axis can be expressed as successive boosts along the three cardinal axes. For infinitesimal boosts we have

$$
\cosh \phi \approx 1, \quad \sinh \phi \approx \phi
$$

Therefore, we have

$$
\begin{aligned}
\Lambda\left(\phi^{j}\right)^{\mu}{ }_{\nu} & =\Lambda\left(\phi^{1}\right)^{\mu}{ }_{\alpha} \Lambda\left(\phi^{2}\right)^{\alpha}{ }_{\beta} \Lambda\left(\phi^{3}\right)^{\beta}{ }_{\nu} \\
& =\left(\begin{array}{cccc}
1 & \phi^{1} & 0 & 0 \\
\phi^{1} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \phi^{2} & 0 \\
0 & 1 & 0 & 0 \\
\phi^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & \phi^{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\phi^{3} & 0 & 0 & 1
\end{array}\right) \\
\Lambda\left(\phi^{j}\right)^{\mu}{ }_{\nu} & =\left(\begin{array}{cccc}
1 & \phi^{1} & \phi^{2} & \phi^{3} \\
\phi^{1} & 1 & 0 & 0 \\
\phi^{2} & 0 & 1 & 0 \\
\phi^{3} & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Rotations can be represented as

$$
\begin{gathered}
R\left(\theta^{1}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta^{1} & \sin \theta^{1} \\
0 & 0 & -\sin \theta^{1} & \cos \theta^{1}
\end{array}\right), \quad R\left(\theta^{2}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta^{2} & 0 & -\sin \theta^{2} \\
0 & 0 & 1 & 0 \\
0 & \sin \theta^{2} & 0 & \cos \theta^{2}
\end{array}\right) \\
R\left(\theta^{3}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta^{3} & \sin \theta^{3} & 0 \\
0 & -\sin \theta^{3} & \cos \theta^{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

A infinitesimal rotation θ^{j} about the x^{j} axis can be expressed as successive rotations about the three cardinal axes. For infinitesimal rotations we have

$$
\cos \theta \approx 1, \quad \sin \theta \approx \theta
$$

Therefore, we have

$$
\begin{aligned}
& \Lambda\left(\theta^{j}\right)^{\mu}{ }_{\nu}=\Lambda\left(\theta^{1}\right)^{\mu}{ }_{\alpha} \Lambda\left(\theta^{2}\right)^{\alpha}{ }_{\beta} \Lambda\left(\theta^{3}\right)^{\beta}{ }_{\nu} \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \theta^{1} \\
0 & 0 & -\theta^{1} & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -\theta^{2} \\
0 & 0 & 1 & 0 \\
0 & \theta^{2} & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \theta^{3} & 0 \\
0 & -\theta^{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \Lambda\left(\theta^{j}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \theta^{3} & -\theta^{2} \\
0 & -\theta^{3} & 1 & \theta^{1} \\
0 & \theta^{2} & -\theta^{1} & 1
\end{array}\right)
\end{aligned}
$$

Using this, a general infinitesimal Lorentz transformation can be written as

$$
\begin{aligned}
\boldsymbol{\Lambda} & =\Lambda\left(\phi^{i}\right)^{\mu}{ }_{\alpha} \Lambda\left(\theta^{j}\right)^{\alpha}{ }_{\nu} \\
& =\left(\begin{array}{cccc}
1 & \phi^{1} & \phi^{2} & \phi^{3} \\
\phi^{1} & 1 & \theta^{3} & -\theta^{2} \\
\phi^{2} & -\theta^{3} & 1 & \theta^{1} \\
\phi^{3} & \theta^{2} & -\theta^{1} & 1
\end{array}\right) \\
\boldsymbol{\Lambda} & =\mathbb{1}+\boldsymbol{\omega}
\end{aligned}
$$

where

$$
\boldsymbol{\omega}=\omega^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & \phi^{1} & \phi^{2} & \phi^{3} \\
\phi^{1} & 0 & \theta^{3} & -\theta^{2} \\
\phi^{2} & -\theta^{3} & 0 & \theta^{1} \\
\phi^{3} & \theta^{2} & -\theta^{1} & 0
\end{array}\right)
$$

This tensor, when made doubly contravariant or covariant, is anti-symmetric

$$
\begin{aligned}
\omega^{\mu \nu} & =\omega^{\mu}{ }_{\lambda} g^{\lambda \nu} \\
& =\left(\begin{array}{cccc}
0 & \phi^{1} & \phi^{2} & \phi^{3} \\
\phi^{1} & 0 & \theta^{3} & -\theta^{2} \\
\phi^{2} & -\theta^{3} & 0 & \theta^{1} \\
\phi^{3} & \theta^{2} & -\theta^{1} & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
\omega^{\mu \nu} & =\left(\begin{array}{cccc}
0 & -\phi^{1} & -\phi^{2} & -\phi^{3} \\
\phi^{1} & 0 & -\theta^{3} & \theta^{2} \\
\phi^{2} & \theta^{3} & 0 & -\theta^{1} \\
\phi^{3} & -\theta^{2} & \theta^{1} & 0
\end{array}\right) \\
\omega_{\mu \nu} & =g_{\mu \lambda} \omega^{\lambda}{ }_{\nu} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
0 \\
0 & 0 & 0 \\
0
\end{array}\right)\left(\begin{array}{ccc}
0 & \phi^{1} & \phi^{2} \\
\phi^{1} & 0 & \theta^{3} \\
\phi^{2} & -\theta^{2} \\
\phi^{3} & \theta^{3} & 0 \\
\theta^{2} & -\theta^{1} & 0
\end{array}\right) \\
\omega_{\mu \nu}^{1} & =\left(\begin{array}{cccc}
0 & \phi^{1} & \phi^{2} & \phi^{3} \\
-\phi^{1} & 0 & \theta^{3} & -\theta^{2} \\
-\phi^{2} & -\theta^{3} & 0 & \theta^{1} \\
-\phi^{3} & \theta^{2} & -\theta^{1} & 0
\end{array}\right)
\end{aligned}
$$

We can write an explicit relationship between ϕ^{i}, θ^{i} and $\omega^{i j}$ as follows

$$
\phi^{i}=\omega^{0 i}
$$

which is easily verified just by looking at $\omega^{\mu \nu}$. As for θ^{i}, we have

$$
\theta^{i}=-\frac{1}{2} \varepsilon^{i j k} \omega^{j k}
$$

where summation is implied over j, k. This we can check by hand

$$
\begin{aligned}
\theta^{1} & =-\frac{1}{2}\left(\omega^{23}-\omega^{32}\right) & \theta^{2} & =-\frac{1}{2}\left(\omega^{31}-\omega^{13}\right) \\
& =\omega^{31} & \theta^{3} & =-\frac{1}{2}\left(\omega^{12}-\omega^{21}\right) \\
& =-\omega^{23} & & =-\omega^{12} \\
\theta^{1} & =\theta^{1} & \theta^{2} & =\theta^{2}
\end{aligned} \theta^{3}=\theta^{3}
$$

9.4

Under a Poincaré transformation, a function will transform as

$$
f\left(x^{\prime}\right)=f(x)+a^{\mu} \partial_{\mu} f(x)+\omega_{\nu}^{\mu} x^{\nu} \partial_{\mu} f(x)
$$

Since $\omega_{\mu \nu}=-\omega_{\nu \mu}$, we can write this as

$$
\begin{aligned}
f\left(x^{\prime}\right) & =\left[1+a^{\mu} \partial_{\mu}+g^{\mu \lambda} \omega_{\lambda \nu} x^{\nu} \partial_{\mu}\right] f(x) \\
& =\left[1+a^{\mu} \partial_{\mu}+\omega_{\lambda \nu} x^{\nu} \partial^{\lambda}\right] f(x) \\
& =\left[1+a^{\mu} \partial_{\mu}+\frac{1}{2}\left(\omega_{\lambda \nu}-\omega_{\nu \lambda}\right) x^{\nu} \partial^{\lambda}\right] f(x) \\
& =\left[1+a^{\mu} \partial_{\mu}+\frac{1}{2} \omega_{\lambda \nu}\left(x^{\nu} \partial^{\lambda}-x^{\lambda} \partial^{\nu}\right)\right] f(x) \\
f\left(x^{\prime}\right) & =\left[1+a^{\mu} \partial_{\mu}-\frac{1}{2} \omega_{\mu \nu}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)\right] f(x)
\end{aligned}
$$

If we define the generators of the Poincaré group as $p_{\mu}=-i \partial_{\mu}$ and $M^{\mu \nu}=-i\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)$, then we can write this as

$$
f\left(x^{\prime}\right)=\left[1-i a^{\mu} p_{\mu}+\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu}\right] f(x)
$$

Since $M^{\mu \nu}$ generates Lorentz transformation, it can be related to the generators of rotations and boosts as

$$
J^{i}=\frac{1}{2} \varepsilon^{i j k} M^{j k}, \quad K^{i}=M^{0 i}
$$

Putting these together with how $\omega^{\mu \nu}$ relations to rotations and boosts, we can write

$$
\begin{aligned}
\omega_{\mu \nu} M^{\mu \nu} & =2 \omega_{0 \mu} M^{0 \mu}+2 \omega_{i \mu} M^{i \mu} \\
& =2 \omega_{0 i} M^{0 i}+2 \omega_{i j} M^{i j} \\
\omega_{\mu \nu} M^{\mu \nu} & =-2 \phi_{i} K^{i}+2 \omega_{i j} M^{i j}
\end{aligned}
$$

Putting together θ_{i} and J^{i}, we have

$$
\begin{aligned}
\theta_{i} J^{i} & =\frac{1}{4} \varepsilon^{i j k} \varepsilon_{i m n} \omega_{j k} M^{m n} \\
& =\frac{1}{4}\left(\delta_{m}^{j} \delta_{n}^{k}-\delta_{n}^{j} \delta_{m}^{k}\right) \omega_{j k} M^{m n} \\
& =\frac{1}{2} \omega_{j k}\left(M^{j k}-M^{k j}\right) \\
\theta_{i} J^{i} & =\omega_{j k} M^{j k}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\omega_{\mu \nu} M^{\mu \nu} & =-2 \phi_{i} K^{i}+2 \theta_{i} J^{i} \\
-\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu} & =-i\left(J^{i} \theta_{i}-K^{i} \phi_{i}\right) \\
\exp \left(-\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu}\right) & =e^{-i(\mathbf{J} \cdot \boldsymbol{\theta}-\mathbf{K} \cdot \boldsymbol{\phi})}
\end{aligned}
$$

