
Chapter 9

9.1

The translation operator is given by

Û(a) = e
�ip̂·a

In this simple form, the generator of this transformation, p̂, can be expressed as the following derivative
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9.2

For the representations of Lorentz boosts shown below
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The generators of these transformations can be represented as follows

K
1
= � i

@D(�
1
)

@�1

����
�1=0

= �i

0

BB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

CCA

K
2
= � i

@D(�
2
)

@�2

����
�2=0

= �i

0

BB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1

CCA

K
3
= � i

@D(�
3
)

@�3

����
�3=0

= �i

0

BB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCA

25



26 CHAPTER 9.

9.3

A infinitesimal boost �
j
along the x

j
axis can be expressed as successive boosts along the three cardinal

axes. For infinitesimal boosts we have

cosh� ⇡ 1, sinh� ⇡ �

Therefore, we have
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Rotations can be represented as
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A infinitesimal rotation ✓
j
about the x

j
axis can be expressed as successive rotations about the three cardinal

axes. For infinitesimal rotations we have

cos ✓ ⇡ 1, sin ✓ ⇡ ✓

Therefore, we have
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Using this, a general infinitesimal Lorentz transformation can be written as
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This tensor, when made doubly contravariant or covariant, is anti-symmetric
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We can write an explicit relationship between �
i
, ✓

i
and !

ij
as follows

�
i
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which is easily verified just by looking at !
µ⌫
. As for ✓

i
, we have
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where summation is implied over j, k. This we can check by hand
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9.4

Under a Poincaré transformation, a function will transform as

f(x
0
) = f(x) + a

µ
@µf(x) + !

µ

⌫
x
⌫
@µf(x)

Since !µ⌫ = �!⌫µ, we can write this as

f(x
0
) =

⇥
1 + a

µ
@µ + g

µ�
!�⌫x

⌫
@µ

⇤
f(x)

=
⇥
1 + a

µ
@µ + !�⌫x

⌫
@
�
⇤
f(x)

=


1 + a

µ
@µ +

1

2
(!�⌫ � !⌫�)x

⌫
@
�

�
f(x)

=


1 + a

µ
@µ +

1

2
!�⌫

�
x
⌫
@
�
� x

�
@
⌫
��
f(x)

f(x
0
) =


1 + a

µ
@µ �

1

2
!µ⌫(x

µ
@
⌫
� x

⌫
@
µ
)

�
f(x)



28 CHAPTER 9.

If we define the generators of the Poincaré group as pµ = �i@µ and M
µ⌫

= �i(x
µ
@
⌫
� x

⌫
@
µ
), then we can

write this as

f(x
0
) =


1� ia

µ
pµ +

i

2
!µ⌫M

µ⌫

�
f(x)

Since M
µ⌫

generates Lorentz transformation, it can be related to the generators of rotations and boosts as
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