Chapter 15

15.1

The reaction $\pi^{0} \rightarrow \gamma+\gamma+\gamma$ is not allowed because it violates conservation of charge conjugation, while the electromagnetic interaction preserves charge conjugation

$$
\mathrm{C}\left|\pi^{0}\right\rangle=+1\left|\pi^{0}\right\rangle, \quad \mathrm{C}|\gamma \gamma \gamma\rangle=(-1)^{3}|\gamma \gamma \gamma\rangle=-1|\gamma \gamma \gamma\rangle
$$

15.2

To begin, magnetic flux is a pseudoscalar, as the magnetic field is a pseudovector

$$
\mathbf{B}=\nabla \times \mathbf{A} \xrightarrow{\mathrm{P}} \mathbf{B}
$$

and magnetic flux is given by the dot product between a pseudovector and a vector integrated over an even number of spatial dimensions

$$
\Phi_{B}=\int \mathrm{d}^{2} x \mathbf{B} \cdot \hat{\mathbf{n}} \xrightarrow{\mathrm{P}}-\Phi_{B}
$$

Angular momentum, much like the magnetic field, is a pseudovector, as it is the cross product of two vectors

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p} \xrightarrow{\mathrm{P}} \mathbf{L}
$$

Charge is a scalar, as it's given by the integral

$$
Q=\int \mathrm{d}^{3} x \rho(x) \xrightarrow{\mathrm{P}} Q
$$

for which a parity inversion is simply a change of variables. The scalar product of a vector and a pseudovector is a pseudoscalar. The scalar product of two vectors and of two pseudovectors, however, is a scalar.

15.3

The two dimensional representation of rotations in 3 dimensions is given by

$$
\mathbf{R}(\hat{\mathbf{n}}, \theta)=\exp \left(-i \frac{\theta}{2} \boldsymbol{\sigma} \cdot \mathbf{n}\right)=\mathbb{1} \cos \frac{\theta}{2}-i \boldsymbol{\sigma} \cdot \mathbf{n} \sin \frac{\theta}{2}
$$

where $\boldsymbol{\sigma}=\left(\begin{array}{lll}\sigma_{1} & \sigma_{2} & \sigma_{3}\end{array}\right)$ are the pauli matrices. With this, we have

$$
\begin{aligned}
& \mathbf{R}(\hat{\mathbf{x}}, \theta)=\left(\begin{array}{cc}
\cos \theta / 2 & -i \sin \theta / 2 \\
-i \sin \theta / 2 & \cos \theta / 2
\end{array}\right) \\
& \mathbf{R}(\hat{\mathbf{y}}, \theta)=\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right) \\
& \mathbf{R}(\hat{\mathbf{z}}, \theta)=\left(\begin{array}{cc}
\exp (-i \theta / 2) & 0 \\
0 & \exp (i \theta / 2)
\end{array}\right)
\end{aligned}
$$

