Chapter 13

13.1

The conserved charges for an $\mathrm{SO}(3)$ internal symmetry

$$
\hat{Q}_{\mathrm{N}}^{a}=-i \int \mathrm{~d}^{3} p \varepsilon^{a b c} \hat{a}_{b \mathbf{p}}^{\dagger} \hat{\mathrm{a}}_{\mathrm{cp}}
$$

can be written collectively as

$$
\hat{\mathbf{Q}}_{\mathrm{N}}=\int \mathrm{d}^{3} p \hat{\mathbf{A}}_{\mathbf{p}}^{\dagger} \mathbf{J} \hat{\mathbf{A}}_{\mathbf{p}}
$$

where $\hat{\mathbf{A}}_{\mathbf{p}}=\left(\begin{array}{lll}\hat{a}_{1 \mathbf{p}} & \hat{a}_{2 \mathbf{p}} & \hat{a}_{3 \mathbf{p}}\end{array}\right)^{\mathrm{T}}$ and the vector of matrices \mathbf{J} must be of the form such that we recover the component-wise formulae given above. These matrices turn out to be precisely the spin 1 angular momentum matrices

$$
J_{1}=i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad J_{2}=i\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad J_{3}=i\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

which can be readily checked by doing out the matrix multiplication. Therefore, the Noether charge is given by

$$
\hat{\mathbf{Q}}_{\mathrm{N}}=\int \mathrm{d}^{3} p \hat{\mathbf{A}}_{\mathbf{p}}^{\dagger} \mathbf{J} \hat{\mathbf{A}}_{\mathbf{p}}
$$

To write the Noether charge in the form

$$
\hat{\mathbf{Q}}_{\mathrm{N}}=\int \mathrm{d}^{3} p \hat{\mathbf{B}}_{\mathbf{p}}^{\dagger} \tilde{\mathbf{J}}_{\mathbf{p}}
$$

where $\hat{\mathbf{B}}_{\mathbf{p}}=\left(-\frac{\hat{a}_{1 \mathbf{p}}-i \hat{a}_{2 \mathbf{p}}}{\sqrt{2}} \quad \hat{a}_{3 \mathbf{p}} \quad \frac{\hat{a}_{1 \mathbf{p}}+i \hat{a}_{2 \mathbf{p}}}{\sqrt{2}}\right)$, we need the unitary matrix U such that $\hat{\mathbf{B}}_{\mathbf{p}}=U \hat{\mathbf{A}}_{\mathbf{p}}$. This matrix has the form

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-1 & i & 0 \\
0 & 0 & \sqrt{2} \\
1 & i & 0
\end{array}\right)
$$

With this, we have $\tilde{\mathbf{J}}=U \mathbf{J} U^{\dagger}$ from which we can read off

$$
\tilde{J}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \tilde{J}_{2}=\frac{i}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad \tilde{J}_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

13.2

To confirm that the matrix

$$
\Lambda_{\nu}^{\mu}(p)=\frac{1}{m}\left(\begin{array}{cccc}
E_{\mathbf{p}} & 0 & 0 & |\mathbf{p}| \\
0 & m & 0 & 0 \\
0 & 0 & m & 0 \\
|\mathbf{p}| & 0 & 0 & E_{\mathbf{p}}
\end{array}\right)
$$

performs a boost in the z-direction, we can simply apply the matrix to the four-vector of a massive particle at rest

$$
\Lambda^{\mu}{ }_{\nu}(p)\left(\begin{array}{c}
m \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
E_{\mathbf{p}} \\
0 \\
0 \\
|\mathbf{p}|
\end{array}\right)
$$

which yields the four-vector of a massive particle moving with momentum $|\mathbf{p}|$ in the z-direction. After boosting the polarization vectors, we can check that they remain normalized according to

$$
\epsilon_{\lambda}^{*} \cdot \epsilon_{\lambda}=g_{\mu \nu} \epsilon_{\lambda}^{\mu *}(p) \epsilon_{\lambda}^{\nu}(p)=-1
$$

as follows

$$
\begin{gathered}
\left.\begin{array}{|c}
\epsilon_{1}^{*} \cdot \epsilon_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right)=-1 \\
\epsilon_{2}^{*} \cdot \epsilon_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right)=-1 \\
\epsilon_{3}^{*} \cdot \epsilon_{3}=(|\mathbf{p}| / m
\end{array} 00 \begin{array}{lll}
E_{\mathbf{p}} / m
\end{array}\right)\left(\begin{array}{c}
|\mathbf{p}| / m \\
0 \\
0 \\
-E_{\mathbf{p}} / m
\end{array}\right)=\frac{|\mathbf{p}|^{2}-E_{\mathbf{p}}^{2}}{m^{2}}=-1
\end{gathered}
$$

If we instead consider circular polarization vectors

$$
\epsilon_{\lambda=R}^{\mu}=\frac{-1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-i \\
0
\end{array}\right), \quad \epsilon_{\lambda=L}^{\mu}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
i \\
0
\end{array}\right), \quad \epsilon_{\lambda=3}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

we find that

$$
\epsilon_{R}^{*} \cdot \epsilon_{R}=\frac{1}{2}\left(\begin{array}{llll}
0 & 1 & i & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
-1 \\
i \\
0
\end{array}\right)=-1
$$

$$
\epsilon_{L}^{*} \cdot \epsilon_{L}=\frac{1}{2}\left(\begin{array}{llll}
0 & 1 & -i & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
-1 \\
-i \\
0
\end{array}\right)=-1
$$

$$
\epsilon_{3}^{*} \cdot \epsilon_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right)=-1
$$

these polarization vectors are normalized by the same convention.

13.3

To check that $P_{L}^{\mu \nu}$ and $P_{T}^{\mu \nu}$ are indeed projection operators, we need to confirm that $P_{L}{ }^{2}=P_{L}$ and $P_{T}{ }^{2}=P_{T}$. Starting with the former, we have

$$
\begin{aligned}
\left(P_{L}^{\mu \nu}\right)^{2} & =P_{L}^{\mu \sigma} g_{\sigma \lambda} P_{L}^{\lambda \nu} \\
& =\left(\frac{p^{\mu} p_{\lambda}}{p^{2}}\right)\left(\frac{p^{\lambda} p^{\nu}}{p^{2}}\right) \\
& =\frac{p^{\mu} p^{\nu}}{p^{2}} \\
\left(P_{L}^{\mu \nu}\right)^{2} & =P_{L}^{\mu \nu}
\end{aligned}
$$

The latter similarly yields

$$
\begin{aligned}
\left(P_{T}^{\mu \nu}\right)^{2} & =P_{T}^{\mu \sigma} g_{\sigma \lambda} P_{T}^{\lambda \nu} \\
& =\left(g_{\lambda}^{\mu}-\frac{p^{\mu} p_{\lambda}}{p^{2}}\right)\left(g^{\lambda \nu}-\frac{p^{\lambda} p^{\nu}}{p^{2}}\right) \\
& =\delta_{\lambda}^{\mu} g^{\lambda \nu}-\delta^{\mu}{ }_{\lambda} \frac{p^{\lambda} p^{\nu}}{p^{2}}-g^{\lambda \nu} \frac{p^{\mu} p_{\lambda}}{p^{2}}+\frac{p^{\mu} p^{\nu}}{p^{2}} \\
& =g^{\mu \nu}-2 \frac{p^{\mu} p^{\nu}}{p^{2}}+\frac{p^{\mu} p^{\nu}}{p^{2}} \\
& =g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}} \\
\left(P_{T}^{\mu \nu}\right)^{2} & =P_{T}^{\mu \nu}
\end{aligned}
$$

13.4

Starting with the electromagnetic Lagrangian in vacuo

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

we can plug in the definition of the field strength tensor to write this as

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\
\mathcal{L} & =-\frac{1}{2}\left(\partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu}-\partial_{\mu} A_{\nu} \partial^{\nu} A^{\mu}\right)
\end{aligned}
$$

Doing an integration by parts on each term (with the understanding that what we're really considering is the action, which is the integral of \mathcal{L}) and enforcing that the field A_{μ} vanish on the boundary, this becomes

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(A_{\nu} \partial_{\mu} \partial^{\mu} A^{\nu}-A_{\nu} \partial_{\mu} \partial^{\nu} A^{\mu}\right) \\
& =\frac{1}{2}\left(A^{\mu} g_{\mu \nu} \partial^{2} A^{\nu}-A^{\mu} \partial_{\mu} \partial_{\nu} A^{\nu}\right) \\
\mathcal{L} & =\frac{1}{2} A^{\mu}\left(g_{\mu \nu}-\frac{\partial_{\mu} \partial_{\nu}}{\partial^{2}}\right) \partial^{2} A^{\nu}
\end{aligned}
$$

Making the identification that $p_{\mu}=i \partial_{\mu}$, this becomes

$$
\mathcal{L}=\frac{1}{2} A^{\mu}\left(g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right) \partial^{2} A^{\nu}
$$

which we recognize as containing the aforementioned projection operator

$$
\mathcal{L}=\frac{1}{2} A^{\mu} P_{\mu \nu}^{T} \partial^{2} A^{\nu}
$$

