
Chapter 13

13.1

The conserved charges for an SO(3) internal symmetry
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can be written collectively as
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and the vector of matrices J must be of the form such that we recover the

component-wise formulae given above. These matrices turn out to be precisely the spin 1 angular momentum
matrices
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which can be readily checked by doing out the matrix multiplication. Therefore, the Noether charge is given
by
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To write the Noether charge in the form
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â1p�iâ2pp
2
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, we need the unitary matrix U such that B̂p = UÂp. This matrix

has the form
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With this, we have J̃ = UJU † from which we can read o↵
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13.2

To confirm that the matrix

⇤µ

⌫
(p) =

1

m

0

BB@

Ep 0 0 |p|
0 m 0 0
0 0 m 0
|p| 0 0 Ep

1

CCA

performs a boost in the z-direction, we can simply apply the matrix to the four-vector of a massive particle
at rest
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which yields the four-vector of a massive particle moving with momentum |p| in the z-direction. After
boosting the polarization vectors, we can check that they remain normalized according to
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If we instead consider circular polarization vectors
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we find that
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these polarization vectors are normalized by the same convention.
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13.3

To check that P
µ⌫

L
and P
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T
are indeed projection operators, we need to confirm that PL
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2 = PT . Starting with the former, we have

(Pµ⌫

L
)
2
= P

µ�

L
g��P

�⌫

L

=

✓
p
µ
p�

p2

◆✓
p
�
p
⌫

p2

◆

=
p
µ
p
⌫

p2

(Pµ⌫

L
)
2
= P

µ⌫

L

The latter similarly yields
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13.4

Starting with the electromagnetic Lagrangian in vacuo
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we can plug in the definition of the field strength tensor to write this as
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Doing an integration by parts on each term (with the understanding that what we’re really considering is
the action, which is the integral of L) and enforcing that the field Aµ vanish on the boundary, this becomes
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Making the identification that pµ = i@µ, this becomes
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which we recognize as containing the aforementioned projection operator
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