Chapter 7

7.1

For the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{1}{2} m^{2} \varphi^{2}-\sum_{n=1}^{\infty} \lambda_{n} \varphi^{2 n+2}
$$

the equations of motion are given by

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \varphi}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)=0 \\
-m^{2} \varphi^{2}-\sum_{n=1}^{\infty} \lambda_{n}(2 n+2) \varphi^{2 n+1}-\partial_{\mu} \partial^{\mu} \varphi=0 \\
\left(\partial^{2}+m^{2}\right) \varphi+\sum_{n=1}^{\infty}(2 n+2) \lambda_{n} \varphi^{2 n+1}=0
\end{gathered}
$$

7.2

For the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{1}{2} m^{2} \varphi^{2}+J(x) \varphi
$$

the equations of motion are given by

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \varphi}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)=0 \\
-m^{2} \varphi+J(x)-\partial_{\mu} \partial^{\mu} \varphi=0 \\
\left(\partial^{2}+m^{2}\right) \varphi=J(x)
\end{gathered}
$$

7.3

For the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi_{1}\right)^{2}-\frac{1}{2} m^{2} \varphi_{1}^{2}+\frac{1}{2}\left(\partial_{\mu} \varphi_{2}\right)^{2}-\frac{1}{2} m^{2} \varphi_{2}^{2}-g\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2}
$$

the equations of motion are given by

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \varphi_{1}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi_{1}\right)}\right)=0 \\
-m^{2} \varphi_{1}-4 g \varphi_{1}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\partial_{\mu} \partial^{\mu} \varphi_{1}=0 \\
\left(\partial^{2}+m^{2}\right) \varphi_{1}+4 g\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2} \varphi_{1}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \varphi_{2}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi_{2}\right)}\right)=0 \\
-m^{2} \varphi_{2}-4 g \varphi_{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\partial_{\mu} \partial^{\mu} \varphi_{2}=0 \\
\left(\partial^{2}+m^{2}\right) \varphi_{2}+4 g\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2} \varphi_{2}=0
\end{gathered}
$$

7.4

For the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{1}{2} m^{2} \varphi^{2}
$$

we can write out the summation as

$$
\mathcal{L}=\frac{1}{2} \dot{\varphi}^{2}-\frac{1}{2}(\boldsymbol{\nabla} \varphi)^{2}-\frac{1}{2} m^{2} \varphi^{2}
$$

In this form, it's clear to see that

$$
\pi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=\dot{\varphi}
$$

and that

$$
\begin{aligned}
\mathcal{H} & =\pi \dot{\varphi}-\mathcal{L} \\
& =\dot{\varphi}^{2}-\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{2}(\nabla \varphi)^{2}+\frac{1}{2} m^{2} \varphi^{2} \\
\mathcal{H} & =\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{2}(\nabla \varphi)^{2}+\frac{1}{2} m^{2} \varphi^{2}
\end{aligned}
$$

If we define

$$
\Pi^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}
$$

then for this Lagrangian we have

$$
\Pi^{\mu}=\partial^{\mu} \varphi, \quad \Pi^{0}=\pi=\dot{\varphi}
$$

