Chapter 6

6.1

For the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{1}{2} m^{2} \varphi^{2}
$$

the equations of motion are

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \varphi}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)=0 \\
-m^{2} \varphi-\partial_{\mu} \partial^{\mu} \varphi=0 \\
\left(\partial^{2}+m^{2}\right) \varphi=0
\end{gathered}
$$

the conjugate momentum is

$$
\pi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=\dot{\varphi}
$$

and the Hamiltonian is

$$
\begin{aligned}
\mathcal{H} & =\pi \dot{\varphi}-\mathcal{L} \\
& =\dot{\varphi}^{2}-\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{2}(\nabla \varphi)^{2}+\frac{1}{2} m^{2} \varphi^{2} \\
\mathcal{H} & =\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{2}(\boldsymbol{\nabla} \varphi)^{2}+\frac{1}{2} m^{2} \varphi^{2}
\end{aligned}
$$

