Chapter 5

5.1

For a Lagrangian that depends explicitly on time, we have
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5.2

For two functions A(q,p) and B(q,p), the Poisson bracket between them can be shown to be anti-symmetric
as follows
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For the Jacobi identity, we can consider an infinitesimal canonical transformation generated by some function
C(q,p). The change in the Poisson bracket will be

0{A,B} =e{{A,B},C}
where € is an infinitesimal. This can also be written in terms of the individual variations of A and B

§{A,B} = {§A,B} + {A,0B}
= e{{A,C}, B} + €{A,{B,C}}
6{A, B} = —e{{C, A}, B} — {{B,C}, A}

Putting these changes together, we obtain

[{{4,B},C}+ {{C, A}, B} + {{B,C}, A} = 0|
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As for quantum operators, we also have anti-symmetry

[A,B] = AB — BA
f—(BA—AB)
[AvB} = 7[37‘4]

and the Jacobi identity
[4,B],C] +[[C, A], B] +([B,C], A] =

= (AB - BA)C + C(AB — BA)
B(CA— AC) + (BC — CB)A— A(BC — CB)
ABC — ABC) 4+ (BAC — BAC) + (ACB — ACB)

14, 81,01 + 0.4, B] +[1B,C), 4] =

5.3

The commutator of two Hermitian operators A = A" and B = B! can be shown to be anti-symmetric as
follows

= BA— AB
—(AB - BA)
[4,8)' = ~[4,B]
5 Ll 4
For the Lagrangian
I —mc?
5

in the limit v < ¢, the Lagrangian can be written as

the momentum as
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and the Hamiltonian as
H=pv—-L
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5.9

The integral shown below can be extremized by first writing it as a functional as follows
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The condition for extremization will then be that the integrand satisfies the Euler-Lagrange equation
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5.6

For the Lagrangian

L=-m 1/1—£2+qA() -x —qV(x)
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the equations of motion given by are
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5.7

For the Lagrangian

2
L=—-mc*\/1- )C(—Q—I—qA(x)-)'(—qV(x)

in the limit v < ¢, the conjugate momentum is
0L
0%

1
~ 2 <7m02 +-mx%+gA % — qV>
1953 2

P =mXx+ A

p

and the energy is

H=p-x—-L
=mx?+qA-x—L

1
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+qV

5.8

The invariant e*$79F, pF,s can be expressed in terms of the electric and magnetic fields as follows

eV, s F5 = 2(Fo1 — Fio)(Fas — Fs2) — 2(Fo2 — Fao)(Fiz — F31) + 2(Foz — F30)(Fiz — Fa1)
=2(2E1)(—2B1) — 2(2E5)(2Bs) + 2(2E3)(—2DB3)

ePPE,5F,s=—-8E-B

which shows that E - B is also invariant.
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5.9

The expression 9, F*” = J” yields the following Maxwell equations

O E1+ 09Fy + 03FE3 = JO

—O0oF1 + 02 B3 — 03B = J!
—0oFy — 01B3 + 03B = J?
—0gF3 + 01By — 09B1 = J3

OE
VXB—J"‘E

The expression O\ F,, + 0, F,» + 0, Fy, = 0 yields the remaining two Maxwell equations

O1Fp3 + 02F31 + 03F12 =0
—01B1 — 0By — 03B3 =0

OoF12 + 01F + 02Fp1 =0
—09B1 — OBy +02E1 =0

OgF'13 4 01 F30 4 03Fp1 =0
0gBs — O1E3+03E; =0

Ogl3 4 02130 4 032 = 0
—0gB3s — 02F3 + 03F> =0

0B
VXE=—-——
ot
Since the electromagnetic field strength tensor is anti-symmetric Fj,, = —F,,,, we can write

%%FW:%%@@MLFM)

1

N~ N~ N

(0504 F*F — 030, FP)
(9500 FF — 0,05 F5*)

(0500 F*" — 950, F7)

BgﬁaFaB =0
Since 9, F'*" = J¥, this implies that
OuJ" =0
I’ + ;0" =0

op
5__V'J

which is the local charge continuity equation.
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