Chapter 5

5.1

For a Lagrangian that depends explicitly on time, we have

$$
\begin{aligned}
& \frac{\mathrm{d} L}{\mathrm{~d} t}=\frac{\partial L}{\partial x_{i}} \dot{x}_{i}+\frac{\partial L}{\partial \dot{x}_{i}} \ddot{x}_{i}+\frac{\partial L}{\partial t} \\
&=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{x}_{i}}\right) \dot{x}_{i}+\frac{\partial L}{\partial \dot{x}_{i}} \ddot{x}_{i}+\frac{\partial L}{\partial t} \\
&=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{x}_{i}} \dot{x}_{i}\right)+\frac{\partial L}{\partial t} \\
& \frac{\mathrm{~d} L}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(p_{i} \dot{x}_{i}\right)+\frac{\partial L}{\partial t} \\
& \frac{\partial L}{\partial t}=-\frac{\mathrm{d}}{\mathrm{~d} t}\left(p_{i} \dot{x}_{i}-L\right) \\
& \frac{\partial L}{\partial t}=-\frac{\mathrm{d} H}{\mathrm{~d} t} \\
& \hline
\end{aligned}
$$

5.2

For two functions $A(q, p)$ and $B(q, p)$, the Poisson bracket between them can be shown to be anti-symmetric as follows

$$
\begin{aligned}
\{A, B\} & =\frac{\partial A}{\partial q} \frac{\partial B}{\partial p}-\frac{\partial A}{\partial p} \frac{\partial B}{\partial q} \\
& =\frac{\partial B}{\partial p} \frac{\partial A}{\partial q}-\frac{\partial B}{\partial q} \frac{\partial A}{\partial p} \\
& =-\frac{\partial B}{\partial q} \frac{\partial A}{\partial p}+\frac{\partial B}{\partial p} \frac{\partial A}{\partial q} \\
\{A, B\} & =-\{B, A\}
\end{aligned}
$$

For the Jacobi identity, we can consider an infinitesimal canonical transformation generated by some function $C(q, p)$. The change in the Poisson bracket will be

$$
\delta\{A, B\}=\epsilon\{\{A, B\}, C\}
$$

where ϵ is an infinitesimal. This can also be written in terms of the individual variations of A and B

$$
\begin{aligned}
\delta\{A, B\} & =\{\delta A, B\}+\{A, \delta B\} \\
& =\epsilon\{\{A, C\}, B\}+\epsilon\{A,\{B, C\}\} \\
\delta\{A, B\} & =-\epsilon\{\{C, A\}, B\}-\epsilon\{\{B, C\}, A\}
\end{aligned}
$$

Putting these changes together, we obtain

$$
\{\{A, B\}, C\}+\{\{C, A\}, B\}+\{\{B, C\}, A\}=0
$$

As for quantum operators, we also have anti-symmetry

$$
\begin{aligned}
{[\hat{A}, \hat{B}] } & =\hat{A} \hat{B}-\hat{B} \hat{A} \\
& =-(\hat{B} \hat{A}-\hat{A} \hat{B}) \\
{[\hat{A}, \hat{B}] } & =-[\hat{B}, \hat{A}]
\end{aligned}
$$

and the Jacobi identity

$$
\begin{aligned}
& {[[\hat{A}, \hat{B}], \hat{C}]+[[\hat{C}, \hat{A}], \hat{B}]+[[\hat{B}, \hat{C}], \hat{A}]=} {[\hat{A} \hat{B}-\hat{B} \hat{A}, \hat{C}]+[\hat{C} \hat{A}-\hat{A} \hat{C}, \hat{B}]+[\hat{B} \hat{C}-\hat{C} \hat{B}, \hat{A}] } \\
&=(\hat{A} \hat{B}-\hat{B} \hat{A}) \hat{C}+\hat{C}(\hat{A} \hat{B}-\hat{B} \hat{A})+(\hat{C} \hat{A}-\hat{A} \hat{C}) \hat{B} \\
&+\hat{B}(\hat{C} \hat{A}-\hat{A} \hat{C})+(\hat{B} \hat{C}-\hat{C} \hat{B}) \hat{A}-\hat{A}(\hat{B} \hat{C}-\hat{C} \hat{B}) \\
&=(\hat{A} \hat{B} \hat{C}-\hat{A} \hat{B} \hat{C})+(\hat{B} \hat{A} \hat{C}-\hat{B} \hat{A} \hat{C})+(\hat{A} \hat{C} \hat{B}-\hat{A} \hat{C} \hat{B}) \\
&+(\hat{B} \hat{C} \hat{A}-\hat{B} \hat{C} \hat{A})+(\hat{C} \hat{A} \hat{B}-\hat{C} \hat{A} \hat{B})+(\hat{C} \hat{B} \hat{A}-\hat{C} \hat{B} \hat{A}) \\
& {[[\hat{A}, \hat{B}], \hat{C}]+[[\hat{C}, \hat{A}], \hat{B}]+[[\hat{B}, \hat{C}], \hat{A}]=0 }
\end{aligned}
$$

5.3

The commutator of two Hermitian operators $\hat{A}=\hat{A}^{\dagger}$ and $\hat{B}=\hat{B}^{\dagger}$ can be shown to be anti-symmetric as follows

$$
\begin{aligned}
{[\hat{A}, \hat{B}]^{\dagger} } & =(\hat{A} \hat{B}-\hat{B} \hat{A})^{\dagger} \\
& =\hat{B}^{\dagger} \hat{A}^{\dagger}-\hat{A}^{\dagger} \hat{B}^{\dagger} \\
& =\hat{B} \hat{A}-\hat{A} \hat{B} \\
& -(\hat{A} \hat{B}-\hat{B} \hat{A}) \\
{[\hat{A}, \hat{B}]^{\dagger} } & =-[\hat{A}, \hat{B}]
\end{aligned}
$$

5.4

For the Lagrangian

$$
L=\frac{-m c^{2}}{\gamma}
$$

in the limit $v \ll c$, the Lagrangian can be written as

$$
\begin{aligned}
L & =-m c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& \approx-m c^{2}\left(1-\frac{v^{2}}{2 c^{2}}\right) \\
L & =-m c^{2}+\frac{1}{2} m v^{2}
\end{aligned}
$$

the momentum as

$$
\begin{aligned}
p & =\frac{\partial L}{\partial v} \\
& =m c^{2} \frac{v / c^{2}}{\sqrt{1-(v / c)^{2}}} \\
& \approx \frac{m}{v}\left(\frac{v}{c}\right)^{2}\left(1+\frac{v^{2}}{2 c^{2}}\right) \\
p & =m v
\end{aligned}
$$

and the Hamiltonian as

$$
\begin{aligned}
H & =p v-L \\
& =m c^{2}\left(\frac{v}{c}\right)^{2} \frac{1}{\sqrt{1-(v / c)^{2}}}+m c^{2} \sqrt{1-\left(\frac{v}{c}\right)^{2}} \\
& \approx m c^{2}\left[\left(\frac{v}{c}\right)^{2}\left(1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right)+\left(1-\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right)\right] \\
H & =m c^{2}+\frac{1}{2} m v^{2}
\end{aligned}
$$

5.5

The integral shown below can be extremized by first writing it as a functional as follows

$$
\begin{aligned}
S & =\int_{a}^{b} \mathrm{~d} s \\
& =\int_{a}^{b} \sqrt{c^{2} \mathrm{~d} t^{2}-\mathrm{d} \mathrm{\mathbf{x}}^{2}} \\
& =c \int_{t_{a}}^{t_{b}} \sqrt{1-\frac{1}{c^{2}}\left(\frac{\mathrm{~d} \mathbf{x}}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \\
S[\dot{\mathbf{x}}] & =c \int_{t_{a}}^{t_{b}} \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}} \mathrm{~d} t
\end{aligned}
$$

The condition for extremization will then be that the integrand satisfies the Euler-Lagrange equation

$$
\begin{gathered}
\frac{\partial}{\partial \mathbf{x}}\left(c \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}\right)-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial}{\partial \dot{\mathbf{x}}}\left(c \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}\right)=0 \\
\frac{\partial}{\partial \dot{\mathbf{x}}}\left(c \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}\right)=\alpha \\
\frac{\dot{\mathbf{x}}}{c}\left(1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}\right)^{-1 / 2}=\alpha \\
\dot{\mathbf{x}}^{2}=\alpha^{2} c^{2}\left(1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}\right) \\
\dot{\mathbf{x}}=\frac{\alpha}{\sqrt{1+\alpha^{2}}} c=m c \\
\mathbf{x}(t)=m(c t)+b
\end{gathered}
$$

5.6

For the Lagrangian

$$
L=-m c^{2} \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}+q \mathbf{A}(\mathbf{x}) \cdot \dot{\mathbf{x}}-q V(\mathbf{x})
$$

the equations of motion given by are

$$
\begin{gathered}
\frac{\partial L}{\partial \mathbf{x}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\mathbf{x}}}=0 \\
q(\boldsymbol{\nabla}(\mathbf{A} \cdot \dot{\mathbf{x}})-\boldsymbol{\nabla} V)-\frac{\mathrm{d}}{\mathrm{~d} t}(\gamma m \dot{\mathbf{x}}+q \mathbf{A})=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}(\gamma m \dot{\mathbf{x}})=q\left[(\mathbf{A} \cdot \boldsymbol{\nabla}) \dot{\mathbf{x}}+(\dot{\mathbf{x}} \cdot \boldsymbol{\nabla}) \mathbf{A}+\dot{\mathbf{x}} \times \boldsymbol{\nabla} \times \mathbf{A}+\mathbf{A} \times \boldsymbol{\nabla} \times \dot{\mathbf{x}}-\boldsymbol{\nabla} V-\frac{\mathrm{d} \mathbf{A}}{\mathrm{~d} t}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\gamma m \dot{\mathbf{x}})=q\left[(\dot{\mathbf{x}} \cdot \boldsymbol{\nabla}) \mathbf{A}+\dot{\mathbf{x}} \times \boldsymbol{\nabla} \times \mathbf{A}-\boldsymbol{\nabla} V-\frac{\partial \mathbf{A}}{\partial t}-(\dot{\mathbf{x}} \cdot \boldsymbol{\nabla}) \mathbf{A}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\gamma m \dot{\mathbf{x}})=q\left[-\nabla V-\frac{\partial \mathbf{A}}{\partial t}+\dot{\mathbf{x}} \times \boldsymbol{\nabla} \times \mathbf{A}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\gamma m \dot{\mathbf{x}})=q(\mathbf{E}+\dot{\mathbf{x}} \times \mathbf{B})
\end{gathered}
$$

5.7

For the Lagrangian

$$
L=-m c^{2} \sqrt{1-\frac{\dot{\mathbf{x}}^{2}}{c^{2}}}+q \mathbf{A}(\mathbf{x}) \cdot \dot{\mathbf{x}}-q V(\mathbf{x})
$$

in the limit $v \ll c$, the conjugate momentum is

$$
\begin{aligned}
\mathbf{p} & =\frac{\partial L}{\partial \dot{\mathbf{x}}} \\
& \approx \frac{\partial}{\partial \dot{\mathbf{x}}}\left(-m c^{2}+\frac{1}{2} m \dot{\mathbf{x}}^{2}+q \mathbf{A} \cdot \dot{\mathbf{x}}-q V\right) \\
\mathbf{p} & =m \dot{\mathbf{x}}+q \mathbf{A}
\end{aligned}
$$

and the energy is

$$
\begin{aligned}
H & =\mathbf{p} \cdot \dot{\mathbf{x}}-L \\
& =m \dot{\mathbf{x}}^{2}+q \mathbf{A} \cdot \dot{\mathbf{x}}-L \\
& =m c^{2}+\frac{1}{2} m \dot{\mathbf{x}}^{2}+q V \\
H & =m c^{2}+\frac{(\mathbf{p}-q \mathbf{A})^{2}}{2 m}+q V
\end{aligned}
$$

5.8

The invariant $\varepsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta} F_{\gamma \delta}$ can be expressed in terms of the electric and magnetic fields as follows

$$
\begin{aligned}
\varepsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta} F_{\gamma \delta} & =2\left(F_{01}-F_{10}\right)\left(F_{23}-F_{32}\right)-2\left(F_{02}-F_{20}\right)\left(F_{13}-F_{31}\right)+2\left(F_{03}-F_{30}\right)\left(F_{12}-F_{21}\right) \\
& =2\left(2 E_{1}\right)\left(-2 B_{1}\right)-2\left(2 E_{2}\right)\left(2 B_{2}\right)+2\left(2 E_{3}\right)\left(-2 B_{3}\right) \\
\varepsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta} F_{\gamma \delta} & =-8 \mathbf{E} \cdot \mathbf{B}
\end{aligned}
$$

which shows that $\mathbf{E} \cdot \mathbf{B}$ is also invariant.

5.9

The expression $\partial_{\mu} F^{\mu \nu}=J^{\nu}$ yields the following Maxwell equations

$$
\begin{gathered}
\partial_{1} E_{1}+\partial_{2} E_{2}+\partial_{3} E_{3}=J^{0} \\
\nabla \cdot \mathbf{E}=\rho \\
-\partial_{0} E_{1}+\partial_{2} B_{3}-\partial_{3} B_{2}=J^{1} \\
-\partial_{0} E_{2}-\partial_{1} B_{3}+\partial_{3} B_{1}=J^{2} \\
-\partial_{0} E_{3}+\partial_{1} B_{2}-\partial_{2} B_{1}=J^{3} \\
\nabla \times \mathbf{B}=\mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}
\end{gathered}
$$

The expression $\partial_{\lambda} F_{\mu \nu}+\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}=0$ yields the remaining two Maxwell equations

$$
\begin{gathered}
\partial_{1} F_{23}+\partial_{2} F_{31}+\partial_{3} F_{12}=0 \\
-\partial_{1} B_{1}-\partial_{2} B_{2}-\partial_{3} B_{3}=0 \\
\nabla \cdot \mathbf{B}=0 \\
\partial_{0} F_{12}+\partial_{1} F_{20}+\partial_{2} F_{01}=0 \\
-\partial_{0} B_{1}-\partial_{1} E_{2}+\partial_{2} E_{1}=0 \\
\partial_{0} F_{13}+\partial_{1} F_{30}+\partial_{3} F_{01}=0 \\
\partial_{0} B_{2}-\partial_{1} E_{3}+\partial_{3} E_{1}=0 \\
\partial_{0} F_{23}+\partial_{2} F_{30}+\partial_{3} F_{02}=0 \\
-\partial_{0} B_{3}-\partial_{2} E_{3}+\partial_{3} E_{2}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla
\end{gathered}
$$

5.10

Since the electromagnetic field strength tensor is anti-symmetric $F_{\mu \nu}=-F_{\nu \mu}$, we can write

$$
\begin{aligned}
\partial_{\beta} \partial_{\alpha} F^{\alpha \beta} & =\frac{1}{2} \partial_{\beta} \partial_{\alpha}\left(F^{\alpha \beta}-F^{\beta \alpha}\right) \\
& =\frac{1}{2}\left(\partial_{\beta} \partial_{\alpha} F^{\alpha \beta}-\partial_{\beta} \partial_{\alpha} F^{\beta \alpha}\right) \\
& =\frac{1}{2}\left(\partial_{\beta} \partial_{\alpha} F^{\alpha \beta}-\partial_{\alpha} \partial_{\beta} F^{\beta \alpha}\right) \\
& =\frac{1}{2}\left(\partial_{\beta} \partial_{\alpha} F^{\alpha \beta}-\partial_{\beta} \partial_{\alpha} F^{\alpha \beta}\right) \\
\partial_{\beta} \partial_{\alpha} F^{\alpha \beta} & =0
\end{aligned}
$$

Since $\partial_{\mu} F^{\mu \nu}=J^{\nu}$, this implies that

$$
\begin{gathered}
\partial_{\mu} J^{\mu}=0 \\
\partial_{0} J^{0}+\partial_{i} J^{i}=0 \\
\frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot \mathbf{J}
\end{gathered}
$$

which is the local charge continuity equation.

