Chapter 4

4.1

Using a generalized commutator

$$
[\hat{A}, \hat{B}]_{\zeta}=\hat{A} \hat{B}-\zeta \hat{B} \hat{A}
$$

where $\zeta= \pm 1$ for bosons/fermions, the operator $\hat{\rho}(\mathbf{x}) \hat{\rho}(\mathbf{y})$ can be written as

$$
\begin{aligned}
\hat{\rho}(\mathbf{x}) \hat{\rho}(\mathbf{y}) & =\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{y}) \hat{\psi}(\mathbf{y}) \\
& =\hat{\psi}^{\dagger}(\mathbf{x})\left(\delta^{(3)}(\mathbf{x}-\mathbf{y})+\zeta \hat{\psi}^{\dagger}(\mathbf{y}) \hat{\psi}(\mathbf{x})\right) \hat{\psi}(\mathbf{y}) \\
\hat{\rho}(\mathbf{x}) \hat{\rho}(\mathbf{y}) & =\zeta^{2} \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{y}) \hat{\psi}(\mathbf{y}) \hat{\psi}(\mathbf{x})+\delta^{(3)}(\mathbf{x}-\mathbf{y}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{y})
\end{aligned}
$$

which yields the "wrong" potential shown below. Since for bosons and fermions $\zeta^{2}=1$, the result is the same for both

$$
\begin{aligned}
\hat{V}_{\text {wrong }} & =\frac{1}{2} \int \mathrm{~d}^{3} x \mathrm{~d}^{3} y V(\mathbf{x}, \mathbf{y}) \hat{\rho}(\mathbf{x}) \hat{\rho}(\mathbf{y}) \\
& =\frac{\zeta^{2}}{2} \int \mathrm{~d}^{3} x \mathrm{~d}^{3} y \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{y}) V(\mathbf{x}, \mathbf{y}) \hat{\psi}(\mathbf{y}) \hat{\psi}(\mathbf{x})+\frac{1}{2} \int \mathrm{~d}^{3} x V(\mathbf{x}, \mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \\
\hat{V}_{\text {wrong }} & =\hat{V}+\frac{1}{2} \int \mathrm{~d}^{3} x V(\mathbf{x}, \mathbf{x}) \hat{\rho}(\mathbf{x})
\end{aligned}
$$

4.2

The single particle density matrix

$$
\hat{\rho}_{1}(\mathbf{x}-\mathbf{y})=\left\langle\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{y})\right\rangle
$$

can be written in terms of creation and annihilation operators as follows

$$
\begin{aligned}
& \hat{\rho}_{1}(\mathbf{x}-\mathbf{y})=\left\langle\frac{1}{\sqrt{\mathcal{V}}} \sum_{\mathbf{q}} \hat{a}_{\mathbf{q}}^{\dagger} e^{-i \mathbf{q} \cdot \mathbf{x}} \frac{1}{\sqrt{\mathcal{V}}} \sum_{\mathbf{p}} \hat{a}_{\mathbf{p}} e^{i \mathbf{p} \cdot \mathbf{y}}\right\rangle \\
& \hat{\rho}_{1}(\mathbf{x}-\mathbf{y})=\frac{1}{\mathcal{V}} \sum_{\mathbf{p}, \mathbf{q}} e^{-i(\mathbf{q} \cdot \mathbf{x}-\mathbf{p} \cdot \mathbf{y})}\left\langle\hat{a}_{\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}}\right\rangle
\end{aligned}
$$

4.3

The Hubbard Hamiltonian for a two spin system in which the spins are anti-aligned is given by

$$
\hat{H} \rightarrow\left(\begin{array}{cccc}
U & -t & -t & 0 \\
-t & 0 & 0 & -t \\
-t & 0 & 0 & -t \\
0 & -t & -t & U
\end{array}\right)
$$

The eigenvalues of this Hamiltonian can be found as follows

$$
\begin{gathered}
\left|\begin{array}{cccc}
U-E & -t & -t & 0 \\
-t & -E & 0 & -t \\
-t & 0 & -E & -t \\
0 & -t & -t & U-E
\end{array}\right|=0 \\
(U-E)\left\{-E\left[-E(U-E)-t^{2}\right]-t[-t E]\right\}+t\left\{-t\left[-E(U-E)-t^{2}\right]-t\left[t^{2}\right]\right\} \\
-t\left\{-t\left[-t^{2}\right]+E[-t(U-E)]-t\left[t^{2}\right]\right\}=0 \\
(U-E)\left\{E^{2}(U-E)+E t^{2}+E t^{2}\right\}+t\left\{E t(U-E)+t^{3}-t^{3}\right\}+t\left\{-t^{3}+E t(U-E)+t^{3}\right\}=0 \\
E^{2}(U-E)^{2}+2 E t^{2}(U-E)+E t^{2}(U-E)+E t^{2}(U-E)=0 \\
E(U-E)\left[E(U-E)+4 t^{2}\right]=0 \\
\\
E=0, U, \frac{U}{2} \pm \frac{1}{2}\left(U^{2}+16 t^{2}\right)^{1 / 2}
\end{gathered}
$$

The eigenvectors corresponding to these values are as follows

$$
\begin{aligned}
& \left|E_{0}\right\rangle=\frac{1}{\sqrt{2}}[|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle] \\
& \left|E_{U}\right\rangle=\frac{1}{\sqrt{2}}[|\uparrow \downarrow, 0\rangle-|0, \uparrow \downarrow\rangle] \\
& \left|E_{+}\right\rangle=N\left[|\uparrow \downarrow, 0\rangle+\left(\frac{U}{4 t}-\frac{1}{4 t}\left(U^{2}+16 t^{2}\right)^{1 / 2}\right)(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle)+|0, \uparrow \downarrow\rangle\right] \\
& \left|E_{-}\right\rangle=N\left[|\uparrow \downarrow, 0\rangle+\left(\frac{U}{4 t}+\frac{1}{4 t}\left(U^{2}+16 t^{2}\right)^{1 / 2}\right)(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle)+|0, \uparrow \downarrow\rangle\right]
\end{aligned}
$$

where N is just a normalization constant. In the limit as $t \rightarrow 0$, the energy eigenvalues become degenerate

$$
E=0,0, U, U
$$

In the limit $\frac{t}{U} \ll 1, t \neq 0$, we have

$$
\begin{aligned}
E_{ \pm} & =\frac{U}{2} \pm \frac{U}{2}\left[1+\left(\frac{4 t}{U}\right)^{2}\right]^{1 / 2} \\
& \approx \frac{U}{2} \pm \frac{U}{2}\left[1+\frac{1}{2}\left(\frac{4 t}{U}\right)^{2}\right] \\
E_{ \pm} & =\frac{U}{2} \pm \frac{U}{2} \pm \frac{8 t^{2}}{U}
\end{aligned}
$$

and therefore

$$
E=0, U, U+4 U\left(\frac{t}{U}\right)^{2},-4 U\left(\frac{t}{U}\right)^{2}
$$

