## Chapter 4

## 4.1

Using a generalized commutator

$$\left[\hat{A}, \hat{B}\right]_{\zeta} = \hat{A}\hat{B} - \zeta \hat{B}\hat{A}$$

where  $\zeta = \pm 1$  for bosons/fermions, the operator  $\hat{\rho}(\mathbf{x})\hat{\rho}(\mathbf{y})$  can be written as

$$\hat{\rho}(\mathbf{x})\hat{\rho}(\mathbf{y}) = \hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{x})\hat{\psi}^{\dagger}(\mathbf{y})\hat{\psi}(\mathbf{y}) 
= \hat{\psi}^{\dagger}(\mathbf{x})\left(\delta^{(3)}(\mathbf{x} - \mathbf{y}) + \zeta\hat{\psi}^{\dagger}(\mathbf{y})\hat{\psi}(\mathbf{x})\right)\hat{\psi}(\mathbf{y}) 
\hat{\rho}(\mathbf{x})\hat{\rho}(\mathbf{y}) = \zeta^{2}\hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}^{\dagger}(\mathbf{y})\hat{\psi}(\mathbf{y})\hat{\psi}(\mathbf{x}) + \delta^{(3)}(\mathbf{x} - \mathbf{y})\hat{\psi}^{\dagger}(\mathbf{x})\hat{\psi}(\mathbf{y})$$

which yields the "wrong" potential shown below. Since for bosons and fermions  $\zeta^2 = 1$ , the result is the same for both

$$\begin{split} \hat{V}_{\text{wrong}} &= \frac{1}{2} \int \mathrm{d}^3 x \, \mathrm{d}^3 y \, V(\mathbf{x}, \mathbf{y}) \hat{\rho}(\mathbf{x}) \hat{\rho}(\mathbf{y}) \\ &= \frac{\zeta^2}{2} \int \mathrm{d}^3 x \, \mathrm{d}^3 y \, \hat{\psi}^\dagger(\mathbf{x}) \hat{\psi}^\dagger(\mathbf{y}) V(\mathbf{x}, \mathbf{y}) \hat{\psi}(\mathbf{y}) \hat{\psi}(\mathbf{x}) + \frac{1}{2} \int \mathrm{d}^3 x \, V(\mathbf{x}, \mathbf{x}) \hat{\psi}^\dagger(\mathbf{x}) \hat{\psi}(\mathbf{x}) \\ \hat{V}_{\text{wrong}} &= \hat{V} + \frac{1}{2} \int \mathrm{d}^3 x \, V(\mathbf{x}, \mathbf{x}) \hat{\rho}(\mathbf{x}) \end{split}$$

## 4 2

The single particle density matrix

$$\hat{\rho}_1(\mathbf{x} - \mathbf{y}) = \left\langle \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{y}) \right\rangle$$

can be written in terms of creation and annihilation operators as follows

$$\hat{\rho}_{1}(\mathbf{x} - \mathbf{y}) = \left\langle \frac{1}{\sqrt{\mathcal{V}}} \sum_{\mathbf{q}} \hat{a}_{\mathbf{q}}^{\dagger} e^{-i\mathbf{q} \cdot \mathbf{x}} \frac{1}{\sqrt{\mathcal{V}}} \sum_{\mathbf{p}} \hat{a}_{\mathbf{p}} e^{i\mathbf{p} \cdot \mathbf{y}} \right\rangle$$

$$\hat{\rho}_{1}(\mathbf{x} - \mathbf{y}) = \frac{1}{\mathcal{V}} \sum_{\mathbf{p}, \mathbf{q}} e^{-i(\mathbf{q} \cdot \mathbf{x} - \mathbf{p} \cdot \mathbf{y})} \left\langle \hat{a}_{\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}} \right\rangle$$

The Hubbard Hamiltonian for a two spin system in which the spins are anti-aligned is given by

$$\hat{H} \to \begin{pmatrix} U & -t & -t & 0 \\ -t & 0 & 0 & -t \\ -t & 0 & 0 & -t \\ 0 & -t & -t & U \end{pmatrix}$$

The eigenvalues of this Hamiltonian can be found as follows

$$\begin{vmatrix} U - E & -t & -t & 0 \\ -t & -E & 0 & -t \\ -t & 0 & -E & -t \\ 0 & -t & -t & U - E \end{vmatrix} = 0$$

$$(U - E) \Big\{ - E \Big[ - E(U - E) - t^2 \Big] - t \Big[ - tE \Big] \Big\} + t \Big\{ - t \Big[ - E(U - E) - t^2 \Big] - t \Big[ t^2 \Big] \Big\}$$

$$- t \Big\{ - t \Big[ - t^2 \Big] + E \Big[ - t(U - E) \Big] - t \Big[ t^2 \Big] \Big\} = 0$$

$$(U - E) \Big\{ E^2(U - E) + Et^2 + Et^2 \Big\} + t \Big\{ Et(U - E) + t^3 - t^3 \Big\} + t \Big\{ - t^3 + Et(U - E) + t^3 \Big\} = 0$$

$$E^2(U - E)^2 + 2Et^2(U - E) + Et^2(U - E) + Et^2(U - E) = 0$$

$$E(U - E) \Big[ E(U - E) + 4t^2 \Big] = 0$$

$$E = 0, U, \frac{U}{2} \pm \frac{1}{2} \left( U^2 + 16t^2 \right)^{1/2}$$

The eigenvectors corresponding to these values are as follows

$$\begin{split} |E_{0}\rangle &= \frac{1}{\sqrt{2}} \Big[ |\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle \Big] \\ |E_{U}\rangle &= \frac{1}{\sqrt{2}} \Big[ |\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle \Big] \\ |E_{+}\rangle &= N \Big[ |\uparrow\downarrow,0\rangle + \left( \frac{U}{4t} - \frac{1}{4t} \left( U^{2} + 16t^{2} \right)^{1/2} \right) \left( |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle \right) + |0,\uparrow\downarrow\rangle \Big] \\ |E_{-}\rangle &= N \Big[ |\uparrow\downarrow,0\rangle + \left( \frac{U}{4t} + \frac{1}{4t} \left( U^{2} + 16t^{2} \right)^{1/2} \right) \left( |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle \right) + |0,\uparrow\downarrow\rangle \Big] \end{split}$$

where N is just a normalization constant. In the limit as  $t \to 0$ , the energy eigenvalues become degenerate

$$\boxed{E=0,0,U,U}$$

In the limit  $\frac{t}{U} \ll 1$ ,  $t \neq 0$ , we have

$$E_{\pm} = \frac{U}{2} \pm \frac{U}{2} \left[ 1 + \left(\frac{4t}{U}\right)^2 \right]^{1/2}$$

$$\approx \frac{U}{2} \pm \frac{U}{2} \left[ 1 + \frac{1}{2} \left(\frac{4t}{U}\right)^2 \right]$$

$$E_{\pm} = \frac{U}{2} \pm \frac{U}{2} \pm \frac{8t^2}{U}$$

and therefore

$$\boxed{E=0,U,U+4U\left(\frac{t}{U}\right)^2,-4U\left(\frac{t}{U}\right)^2}$$