Chapter 4

4.1

Using a generalized commutator

[A,BL = AB - (BA

where ¢ = £1 for bosons/fermions, the operator p(x)s(y) can be written as

which yields the “wrong” potential shown below. Since for bosons and fermions ¢ = 1, the result is the
same for both
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4.2

The single particle density matrix

prx—y) = (P x)i))

can be written in terms of creation and annihilation operators as follows

=) = J5 ok 5 T

pr(x—y)= 5 Z e—i(ax—p-y) <dj1dp>

p.q

12



13

The Hubbard Hamiltonian for a two spin system in which the spins are anti-aligned is given by
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The eigenvalues of this Hamiltonian can be found as follows
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The eigenvectors corresponding to these values are as follows
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where N is just a normalization constant. In the limit as ¢ — 0, the energy eigenvalues become degenerate
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In the limit T < 1, t # 0, we have
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and therefore
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