Chapter 12

The Hamiltonian for a complex scalar field has the form
H= /d% (v/}W} N VT m%w)
In terms of creation and annihilation operators
90e) = / (2?r3)3/2 (2E1)1/2 (apem + Bpe)

the Hamiltonian can be express as
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Normal-ordered, we obtain
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For the complex scalar field, the commutator [¢)(z), 7 (y)] is given by

00 = [ (e ), (e i)
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[§(x), T (y)] :/%i(e_”’“_y) _eiP'(z—y))

For equal times, this commutator vanishes due to the properties of space-like intervals noted in Exercise 11.1

[9(2), 9 (0)] =0, (z —y) space-like|

For the non-relativistic limit, the field is given by

T d3p ~ —ip-x
\Il(x) :/WGPQ P

In this case, the commutator [¥(z), ¥T(y)] is given by

[‘i/(.%'), \i/*(y)] = / M [dpv df]e—i(pw—qy)

(2m)3 q
Epd®e ey

:/ @)y e~ i qy)5(3)(p_q)
d3p

[‘i/(x),\iﬁ(y)] :/(2ﬂ)36—m(z—y)

For equal times, this takes the form

[¥(@), ¥ (1)) =60 (x—y)

For the Lagrangian

1 1 1 1
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the corresponding changes in the fields are given by

which has the internal symmetry

8QO1
Dy = =2
LT g

=—p2, D= ——
9¥=0 o0

Therefore, we have

[Qn,¢1] = —iDd1 = igs
[Qn,$2) = —iD@a = —igy




as well as
A 1 /.~ A
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For the Lagrangian
i 111 2 2 g
£ = 5o = o0nd — 5| (Vo 4 0| -
with Noether current

T = (~p(e) —22v9)

the Noether charge is given by
Q= [ @it
- [ #apta)
Q=-N

The change in the variable ¥ is simply D = 1, which yields
Q.9 = —iDv

The non-relativistic limit of a complex scalar field with no external potential is given by
L= it (2)apW(a) — %V\w(z) V()
The Euler-Lagrange equations of motion yield
oL oL
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Identifying
Ey, — 10y, P — —iV
we have
%\IJ =E,U
2
B, = ;—m
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The complex scalar field

has a U(1) symmetry

£ = iU ()90 () — %vqﬁ(x) VU (z)

U e 0 =V —jal, DU=—i¥, DU =;0f

The associated Noether current is given by

with components
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Jy = #(wiqﬁ - Uio'w)

For an internal transformation operator

we can write

Ula) = ¢iONe
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