
Chapter 10

10.1

The commutator in question can be calculated as follows
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Using the Heisenberg equations of motion, the first term becomes
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The commutator ['(x), @
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(y)] vanishes because the derivatives are only with respect to y, and the commutator

['(x),'(y)] vanishes by definition of the field commutation relations. This leaves
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10.2

For the general Lagrangian
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under an active symmetry transformation 'a ! 'a + �'a, the variation in the Lagrangian is given by
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if the Lagrangian satisfies the Euler-Lagrange equations of motion. The variation in the Lagrangian can

equal a four-divergence without a↵ecting the equations of motion
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µ
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Equating these, we have the conservation law @µJ
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10.3
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the stress-energy tensor is given by
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which is exactly the Hamiltonian found in Exercise 6.1. Calculating the four-divergence of T
µ⌫
, we find

@µT
µ⌫

= @
2
'@

⌫
'+ @

µ
'(@µ@

⌫
')�

1

2
g
µ⌫
⇥
@µ(@�')(@

�
')� 2m

2
'(@µ')

⇤

= @
2
'@

⌫
'+ @

µ
'(@µ@

⌫
')�

1

2
@
⌫
(@�')(@

�
') +m

2
'(@

⌫
')

= (@
2
+m

2
)'(@

⌫
') + @

µ
'(@µ@

⌫
')�

1

2
(@

⌫
@�')(@

�
')�

1

2
(@�')(@

⌫
@
�
')

= @
µ
'(@µ@

⌫
')� @

�
'(@�@

⌫
')

@µT
µ⌫

= 0

For the Noether charges, we have
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10.4

For the Lagrangian
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the conjugate momentum density is given by

⇧
�⇢

=
@L

@(@�A⇢)

=
@

@(@�A⇢)


�
1

4
(@µA⌫ � @⌫Aµ)(@

µ
A

⌫
� @

⌫
A

µ
)

�

= �
1

2
(�

�

µ
�
⇢

⌫
� @

�

⌫
@
⇢

µ
)F

µ⌫

= �
1

2
(F

�⇢
� F

⇢�
)

⇧
�⇢

= �F
�⇢

With this, the stress-energy tensor can be written as
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four-divergence of this term to the stress-energy tensor, the conservation law is unchanged and the new tensor
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