Problem 6.7

For a potential

\[V = \begin{cases}
0 & r < a \\
\infty & r > a
\end{cases} \]

we can use the same method as in problem 6.4 to find the s-wave phase shift and the total cross section.

a) For \(r > a \), we know the solution to the radial Schrödinger equation will have the form

\[A_{\ell}(r) = e^{i\delta_{\ell}} \left(\cos(\delta_{\ell}) j_{\ell}(kr) - \sin(\delta_{\ell}) n_{\ell}(kr) \right) \]

However, for \(r < a \), the wave function must vanish for all \(\ell \)

\[A_{\ell}(r) = 0 \quad \forall \ell \]

Therefore, we need only to ensure the continuity of the wave function at \(r = a \). Namely,

\[e^{i\delta_{\ell}} \left(\cos(\delta_{\ell}) j_{\ell}(kr) - \sin(\delta_{\ell}) n_{\ell}(kr) \right) = 0 \]

This leads to

\[\tan \delta_{\ell} = \frac{j_{\ell}(ka)}{n_{\ell}(ka)} \]

Using this, the s-wave phase shift is obtained immediately

\[\tan \delta_{0} = \frac{j_{0}(ka)}{n_{0}(ka)} \]

\[= - \tan(ka) \]

\[\therefore \delta_{0} = -ka \]

b) The differential cross-section is given by

\[\frac{d\sigma}{d\Omega} = \frac{1}{k} \left| \sum_{\ell} (2\ell + 1) e^{i\delta_{\ell}} \sin \delta_{\ell} P_{\ell}(\cos \theta) \right|^2 \]

\[\approx \frac{1}{k} \sin \delta_{0}^2 \]

\[= \frac{\sin^2 \delta_{0}}{k^2} \]

\[\approx \left(\frac{\delta_{0}}{k} \right)^2 \]

\[\frac{d\sigma}{d\Omega} = a^2 \]

for \(ka \ll 1 \). Integrating this over all angular dependence, we get

\[\sigma_{\text{tot}} = 4\pi a^2 \]

which is different by a factor of 4 from the geometric cross-section of a hard sphere of radius \(a \). Interestingly enough, this is exactly the surface area of a hard sphere.