Problem 2.28

a) The energy eigenfunctions of this system are the solutions to the Schrödinger equation in cylindrical coordinates in the absence of a potential

\[
-\frac{\hbar^2}{2m_e} \nabla^2 \psi = E \psi \quad \Rightarrow \quad \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial z^2} = -k^2 \psi
\]

(38)

If we assume a solution of the form \(\psi(\rho, \theta, z) = R(\rho) \Theta(\theta) Z(z) \), we obtain

\[
\frac{1}{\rho} \Theta Z \left(\frac{dR}{d\rho} + \frac{\rho^2 R}{\rho^2} \frac{d^2 R}{d\rho^2} \right) + \frac{1}{\rho^2} R Z \frac{d^2 \Theta}{d\theta^2} + R \Theta \frac{d^2 Z}{dz^2} = -k^2 R \Theta Z
\]

(39)

Dividing through by \(\frac{1}{\rho^2} R \Theta Z \), this becomes

\[
\frac{\rho}{R} \left(\frac{dR}{d\rho} + \frac{\rho^2 R}{\rho^2} \frac{d^2 R}{d\rho^2} \right) + \frac{1}{\rho^2} \frac{d^2 \Theta}{d\theta^2} + \frac{\rho^2 d^2 Z}{Z \, dz^2} + \rho^2 k^2 = 0
\]

(40)

Since the \(\theta \) dependence is isolated in one term, we can write

\[
\frac{1}{\rho^2} \frac{d^2 \Theta}{d\theta^2} = -m^2
\]

(41)

\[
\frac{\rho}{R} \left(\frac{dR}{d\rho} + \frac{\rho^2 R}{\rho^2} \frac{d^2 R}{d\rho^2} \right) + \frac{\rho^2 d^2 Z}{Z \, dz^2} + \rho^2 k^2 = m^2
\]

(42)

Equation 41 yields solutions of the form

\[
\Theta(\theta) = e^{\pm im\theta}
\]

(43)

From the periodic boundary condition \(\Theta(\theta) = \Theta(\theta + 2\pi) \), we can see that \(m \) is a positive, real integer. As for equation 42, we can now write

\[
\frac{1}{R} \left(\frac{d^2 R}{d\rho^2} + \frac{dR}{\rho \, d\rho} \right) + \left(\frac{k^2 - \frac{m^2}{\rho^2}}{\rho^2} \right) + \frac{1}{Z} \frac{d^2 Z}{dz^2} = 0
\]

(44)

Since the \(z \) dependence is isolated in one term, we can write

\[
\frac{1}{Z} \frac{d^2 Z}{dz^2} = -\alpha^2
\]

(45)

\[
\frac{1}{R} \left(\frac{d^2 R}{d\rho^2} + \frac{dR}{\rho \, d\rho} \right) + \left(\frac{k^2 - \frac{m^2}{\rho^2}}{\rho^2} \right) = \alpha^2
\]

(46)

Equation 45 yields solutions of the form

\[
Z(z) = c_1 e^{i\alpha z} + c_1 e^{-i\alpha z}
\]

(47)

Applying the boundary conditions \(Z(0) = Z(L) = 0 \), we obtain

\[
Z(0) = 0 \quad \Rightarrow \quad c_2 = -c_1
\]

(48)

\[
Z(L) = 0 \quad \Rightarrow \quad \alpha L = \ell \pi, \quad \ell \in \mathbb{Z}
\]

(49)
Therefore, equation 47 becomes
\[Z(z) = C \sin \left(\frac{\ell \pi z}{L} \right) \] (50)

Lastly, we have equation 46 to solve. We can rewrite it in the form
\[\frac{d^2 R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} + \left(k^2 - \alpha^2 - \frac{m^2}{\rho^2} \right) R = 0 \] (51)

If we define \(\kappa^2 \equiv k^2 - \alpha^2 \) and \(x \equiv \kappa \rho \), this becomes
\[x^2 \frac{d^2 R}{dx^2} + x \frac{dR}{dx} + (x^2 - m^2) R = 0 \] (52)

This is the Bessel differential equation, and yields Bessel functions as the solution
\[R(\rho) = A_m J_m(\kappa \rho) + B_m N_m(\kappa \rho) \] (53)

Applying the boundary conditions \(R(\rho_a) = R(\rho_b) = 0 \) yields the following system of equations
\[
\begin{pmatrix}
J_m(\kappa \rho_a) & N_m(\kappa \rho_a) \\
J_m(\kappa \rho_b) & N_m(\kappa \rho_b)
\end{pmatrix}
\begin{pmatrix}
A_m \\
B_m
\end{pmatrix}
= \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\] (54)

The \(n \) values of \(\kappa, \) for a given value of \(m, \) which permit non-trivial solutions to this system are given by the \(n \) roots of the determinant of the matrix in the above equation. If we label the \(n \)th root of the determinant as \(k_{mn}, \) then the characteristic equation reads
\[J_m(k_{mn}\rho_a)N_m(k_{mn}\rho_b) - J_m(k_{mn}\rho_b)N_m(k_{mn}\rho_a) = 0 \] (55)

Therefore, the energy eigenfunctions are given by
\[\psi_{\ell mn}(\rho, \theta, z) = R_{\ell mn}(\rho)\Theta_m(\theta)Z_{\ell}(z) \] (56)
\[\psi_{\ell mn}(\rho, \theta, z) = C \left(A_m J_m(k_{mn}\rho) + B_m N_m(k_{mn}\rho) \right) e^{im\theta} \sin \left(\frac{\ell \pi z}{L} \right) \] (57)

with energy eigenvalues
\[E = \hbar^2 k^2 \frac{2m_e}{2m_e} = \hbar^2 \left(\frac{\kappa^2 + \alpha^2}{2m_e} \right) \] (58)
\[E = \hbar^2 \left[k_{mn}^2 + \left(\frac{\ell \pi}{L} \right)^2 \right] \] (59)

b) In the presence of a magnetic field, \(\mathbf{B} = B\hat{z}, \) the Hamiltonian of the system becomes
\[H = \frac{1}{2m_e} \left(\mathbf{p} - \frac{e\mathbf{A}}{c} \right) \cdot \left(\mathbf{p} - \frac{e\mathbf{A}}{c} \right) \] (60)

By using the relation \(\mathbf{B} = \nabla \times \mathbf{A} \) and Stoke’s theorem, we find the vector potential to be
\[\mathbf{A} = \frac{B \rho_o^2}{2\rho} \hat{\theta} = \frac{\Phi}{2\pi \rho} \hat{\theta} = A \hat{\theta} \] (61)
where $\Phi = \pi \rho_n^2 B$ is the total flux. Therefore, the Hamiltonian can be written as

$$H = \frac{1}{2m_e} \left(-i\hbar \nabla - \frac{e}{c} A \dot{\theta} \right) \cdot \left(-i\hbar \nabla - \frac{e}{c} A \dot{\theta} \right)$$

$$= \frac{-\hbar^2}{2m_e} \left(\nabla - \frac{ie}{\hbar c} A \dot{\theta} \right) \cdot \left(\nabla - \frac{ie}{\hbar c} A \dot{\theta} \right)$$

$$= \frac{-\hbar^2}{2m_e} \left(\rho \frac{\partial}{\partial \rho} + 2 \frac{\partial}{\partial z} + \dot{\theta} \frac{1}{\rho} \left[\frac{\partial}{\partial \theta} - \frac{ie}{\hbar} \frac{\Phi}{2\pi} \right] \right) \cdot \left(\rho \frac{\partial}{\partial \rho} + \dot{z} \frac{\partial}{\partial z} + \dot{\theta} \frac{1}{\rho} \left[\frac{\partial}{\partial \theta} - \frac{ie}{\hbar} \frac{\Phi}{2\pi} \right] \right)$$

$$H = \frac{-\hbar^2}{2m_e} \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \left[\frac{\partial}{\partial \theta} - \frac{ie}{\hbar} \frac{\Phi}{2\pi} \right]^2 + \frac{\partial^2}{\partial z^2} \right)$$

(62)

(63)

(64)

(65)

Defining $D_\Phi \equiv \frac{e}{\hbar c} \frac{\Phi}{2\pi}$, the Schrödinger equation reads

$$\frac{1}{\Theta} \left(\frac{\partial^2}{\partial \rho^2} - 2i D_\Phi \frac{\partial}{\partial \rho} \frac{\partial}{\partial \Theta} - D^2_\Phi \frac{\partial}{\partial \Theta} \right) \Theta = -m^2$$

(66)

Comparing this to equation 38, we see that both ρ and z terms are the same, while the θ term is altered by the factor $-iD_\Phi$. Therefore, in implementing separation of variables just as was done in part (a), the solutions $R(\rho)$ and $Z(z)$ will be exactly the same as those calculated above. The only difference will be that $\Theta(\theta)$ must now satisfy the following equation

$$\frac{1}{\Theta} \left(\frac{\partial^2}{\partial \rho^2} - 2i D_\Phi \frac{\partial}{\partial \rho} \frac{\partial}{\partial \Theta} - D^2_\Phi \frac{\partial}{\partial \Theta} \right) \Theta = -m^2$$

(67)

Attempting a solution of the form $\Theta = e^{i \theta}$, we find

$$\ell^2 - 2i D_\Phi \ell + \left(m^2 - D^2_\Phi \right) = 0$$

(68)

which yields

$$\ell = \frac{1}{2} \left(2i D_\Phi \pm \left[-4D^2_\Phi - 4(m^2 - D^2_\Phi) \right]^{1/2} \right)$$

(69)

$$\ell = i D_\Phi \pm \frac{1}{2} \sqrt{-4m^2}$$

(70)

$$\ell = i(D_\Phi \pm m)$$

(71)

Therefore, the solutions have the form

$$\Theta(\theta) = e^{i(D_\Phi \pm m)\theta}$$

(72)

However, imposing the periodicity constraint, we find that

$$e^{i(D_\Phi \pm m)\theta} = e^{i(D_\Phi \pm m)(\theta + 2\pi)}$$

(73)

$$\therefore m' = D_\Phi \pm m, \quad m' \in \mathbb{Z}$$

(74)

This leads to the result that $m = m' \mp D_\Phi$ is no longer necessarily an integer. Therefore, the energy eigenfunctions and eigenvalues are changed to
\[
\psi_{\ell mn}(\rho, \theta, z) = C \left(A_m J_m(k_{mn}\rho) + B_m N_m(k_{mn}\rho) \right) e^{im\theta} \sin \left(\frac{\ell \pi z}{L} \right)
\]

\[
E_{\ell mn} = \frac{\hbar^2}{2m_e} \left[k_{mn}^2 + \left(\frac{\ell \pi}{L} \right)^2 \right]
\]

\[m = m' \mp D_\Phi\]

despite the electron not directly interacting with the magnetic field.

c) In order for the ground state to be unchanged when the magnetic field is applied, we require that

\[m = m' \mp D_\Phi = 0\] \hspace{1cm} (75)

This implies a flux quantization

\[D_\Phi = \pm m'\] \hspace{1cm} (76)

\[\frac{e}{\hbar c} \frac{\Phi}{2\pi} = m'\] \hspace{1cm} (77)

\[\Phi = \frac{2\pi m'\hbar c}{e}, \quad m' = \pm 1, \pm 2, \ldots\] \hspace{1cm} (78)